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Dynamics of Brain Activity Reveal a Unitary Recognition Signal

Christoph T. Weidemann

Swansea University and University of Pennsylvania

Michael J. Kahana

University of Pennsylvania

Dual-process models of recognition memory typically assume that independent familiarity and recollec-
tion signals with distinct temporal profiles can each lead to recognition (enabling 2 routes to recognition),
whereas single-process models posit a unitary “memory strength” signal. Using multivariate classifiers
trained on spectral electroencephalogram (EEG) features, we quantified neural evidence for recognition
decisions as a function of time. Classifiers trained on a small portion of the decision period performed
similarly to those also incorporating information from previous time points indicating that neural activity
reflects an integrated evidence signal. We propose a single-route account of recognition memory that is
compatible with contributions from familiarity and recollection signals, but relies on a unitary evidence

signal that integrates all available evidence.

Keywords: recognition memory, EEG, machine learning, neural decoding, memory models

A repeated exposure to people or objects sometimes evokes only
a vague sense of familiarity; at others, it elicits vivid recollections
of contextual details from previous encounters. This distinction is
formalized in dual-process models of recognition memory that
posit two independent types of evidence subserving recognition
decisions (with recollection commonly, but not always, conceptu-
alized as a threshold process; Diana, Reder, Arndt, & Park, 2006;
Malmberg, 2008; Yonelinas, 2002; Yonelinas, Aly, Wang, &
Koen, 2010). In apparent support of these models, neuroscientific
studies of recognition memory have identified patterns of brain
activity with distinct time courses thought to reflect an early
familiarity signal (peaking around 400 ms after onset of a memory
probe) and a later recollection signal (peaking around 600 ms after
probe onset; Curran, 1999; Rugg & Curran, 2007).

Most dual-process models assume that familiarity and recollec-
tion signals can each separately lead to recognition (Reder et al.,
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2000). In some models, however, the memory system integrates
evidence from different sources into a unitary evidence signal
(Rotello, Macmillan, & Reeder, 2004; Wixted & Mickes, 2010).
This results in a single route to recognition despite the contribu-
tions from different types of evidence. From this perspective, such
models are conceptually similar to single-process models that
assume only a single evidence source (Malmberg, 2008). One
indication that two separate routes to recognition may not be
necessary to account for recognition performance is the fact that
single-process models have been highly successful at accounting
for intricate relationships between response time distributions,
accuracy, and confidence ratings across a wide range of experi-
mental manipulations (e.g., Cox & Shiffrin, 2012; Diller, Nobel, &
Shiffrin, 2001; Dunn, 2004, 2008; Ratcliff, 1978; Ratcliff &
Starns, 2009; Shiffrin & Steyvers, 1997; Starns & Ratcliff, 2014;
Starns, White, & Ratcliff, 2012; Wixted, 2007). Additionally,
recent work linking brain activity to parameters in a single-process
model of recognition memory has cast doubt on the common
interpretation of early and late electrophysiological signals index-
ing familiarity and recollection, respectively (Ratcliff, Sederberg,
Smith, & Childers, 2016, but see also Anderson, Zhang, Borst, &
Walsh, 2016, and Borst & Anderson, 2015, for an alternative
approach that preserves this interpretation—we will return to this
issue in the discussion).

Because the single- versus dual-process labels do not reliably
differentiate between the number of routes to recognition, we will
refer to models as single- or dual-route models to make this
distinction explicit. Specifically, we label models that assume that
different types of evidence can give rise to different kinds of
recognition decisions (e.g., Diana et al., 2006; Reder et al., 2000;
Yonelinas, 1994, 1997) as dual-route models. Single-route models
are those that assume a single type of evidence source (e.g.,
Shiffrin & Steyvers, 1997) and those that assume that evidence


https://doi.org/10.1101/165225
https://doi.org/10.1101/165225
mailto:ctw@cogsci.info
http://dx.doi.org/10.1037/xlm0000593

gical Association or one of its allied publishers.

ent is copyrighted by the American Psycholo

This docu

ated broadly.

ividual user and is not to be dissemin

ended solely for the personal use of the inc

This article is i

2 WEIDEMANN AND KAHANA

from multiple sources/processes is integrated into a unitary evi-
dence signal (e.g., Rotello et al., 2004; Wixted & Mickes, 2010).
Within the framework of dual-route models, it makes sense to label
individual recognition decisions with respect to the type of evi-
dence (e.g., “familiarity” vs. “recollection”) that gave rise to them,
whereas such a categorization of individual recognition decisions
is not meaningful within the framework of single-route models,
because there information from all available sources contributes to
recognition decisions. We propose that conflating the question
about the number of recognition signals (i.e., the distinction be-
tween single- vs. dual-process models) with the question about the
number of different routes to recognition may have contributed to
the apparent disconnect between the evidence for separate famil-
iarity and recollection signals and the success of single-process
models.

Capitalizing on the presumed temporal separation of familiarity
and recollection signals (Diana et al., 2006), we quantify the neural
evidence distinguishing targets from lures in various partitions of
the period leading up to the recognition decision. Specifically, we
ask if combining neural evidence from multiple time bins during
the recognition decision tells us more about whether an item has
been studied than just the latest considered time bin by itself. If we
are picking up on independent signals at different points in the
recognition decision, then combining information from both
should boost our ability to use neural activity to distinguish be-
tween old and new items. If, however, the neural signal corre-

A
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sponds to an integrated/unitary evidence signal, information from
previous time points should not contain information that is not also
present in the neural activity at later points.

Figure 1 illustrates our approach with the help of two toy models
of evidence in recognition memory. Figure 1A shows activation
for two sources of evidence containing information about the
old/new status of an item as a function of time, and Figure 1B
shows two alternative ways these sources could give rise to an
evidence signal for the recognition decision (in this toy example
we assume an “early” and a “late” source, analogous to the
presumed dynamics of familiarity and recollection signals). The
top panel of Figure 1B illustrates a dual-route model: the recog-
nition decision is based exclusively on whichever source has
accumulated more evidence at the time of response. Thus, any
information from the nondominant evidence source is lost. Assum-
ing sources with different temporal signatures, the evidence signal
will initially be determined by activity from the early source,
which sometimes will be exceeded by activity from the later
source by the time the response is initiated. The bottom panel of
Figure 1B illustrates a single route model: here the evidence for the
recognition memory decision at any given time reflects the infor-
mation accrued across all sources so far. Even when the relative
contributions of the different sources change, no information is
lost, because all relevant information contributes to the evidence
signal.
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Figure 1.

(A) Probability density functions (PDFs) illustrating two sources of evidence for recognition memory

decisions. (B) Cumulative density functions (CDFs) for the PDFs shown in (A) along with CDFs for the evidence
on which the recognition memory decision is based. The top panel illustrates a case where the evidence is
determined by a single source of evidence leading to different routes to recognition memory depending on which
source determines the evidence signal at the time of response (in the case of two sources, we label this class of
models “dual-route models”). The bottom panel illustrates a case where the evidence signal integrates infor-
mation from all sources (we label this class of models “single-route models” regardless of the number of sources
contributing to the evidence). (C) Expected patterns of performance for classifiers trained on features from
individual (I) or cumulative (C) time bins partitioning the time between probe onset and recognition response
(see text for details). Assuming the sources contribute independent information with distinct dynamics, dual-
route models predict diverging performance for classifiers trained on individual and cumulative time bins (top
panel), whereas single-route models predict identical performance (bottom panel; C and I lines are overlapping).
AUC indicates area under the receiver operating characteristic curve, a measure of classifier performance. See
the online article for the color version of this figure.
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It is difficult to distinguish between these alternative accounts
on the basis of recognition decisions alone, because these presum-
ably only reflect a snapshot of the evidence signal from around the
time when the response was initiated. Recordings of brain activity,
however, allow us to assess the evolution of a neural evidence
signal in the lead-up to a recognition response. We used multivar-
iate (“machine learning™) classifiers to quantify the neural evi-
dence distinguishing between targets and lures during the process-
ing of the probe (i.e., between probe onset and just before the
execution of a response). By comparing performance for classifiers
trained on neural features from various partitions of this time
period, we can make inferences about whether relevant informa-
tion is integrated into a single evidence signal or whether evidence
from an earlier signal is sometimes lost.

Figure 1C illustrates the logic of the main analyses. As ex-
plained in the Method section, we partition each recognition de-
cision into time bins and train classifiers either on individual time
bins or on a cumulatively increasing number of time bins. If brain
activity reflects different evidence signals that contribute indepen-
dent information at different time points, then performance of a
classifier trained on neural features from multiple time bins should
exceed that of a classifier trained on features from a single time
point, because it is able to capitalize on the information from
distinct evidence signals (top panel of Figure 1C). If, on the other
hand, the neural evidence signal integrates information from all
sources, then the signals from previous time points do not contain
additional information. Thus, we would expect no benefit for
classifiers trained on neural features from multiple time bins in that
case (lower panel of Figure 1C).

Materials and Method

Participants

The current data set of 132 participants is a subset of the data set
for which we previously presented analyses of overt responses
(Weidemann & Kahana, 2016; basic analyses of recognition ac-
curacy and response times are repeated here for this subset). Each
participant provided informed consent and all procedures were
approved by the Institutional Review Board of the University of
Pennsylvania. We selected those participants who completed 20
sessions of various free-recall tasks. The availability of data from
20 sessions for each participant enabled us to train statistical
classifiers on individual participants’ data from 19 sessions (hold-
ing out data from one session for cross-validation of classifier
performance). As described below in the classification of EEG
data section, we did this repeatedly such that data from each
session was held out once (a leave-one-session-out cross-
validation procedure) and all classifier performance measures were
based on these held-out sessions only. This yielded enough data to
train nonlinear classifiers even in cases where not all trials con-
tributed to the classification (as detailed in the classification of
EEG data section, some of our analyses placed restrictions on
response times).

Experimental Task

As part of a large-scale study of episodic memory, we asked
participants at the end of each of 20 sessions to make recogni-

tion memory decisions and confidence ratings about words that
had been presented earlier in the session for study in various
free-recall tasks. In each session, participants studied between
12 and 16 lists of 16 words that were each presented for 3 s
followed by 0.8-1.2 s of interstimulus interval. In some ses-
sions participants were asked to provide a size or animacy
judgment for each word (see Lohnas & Kahana, 2013, for a
detailed description of the methods for these sessions) and some
sessions included distractor tasks between items and/or between
lists. At the end of each list, participants were given 75 s to
recall items in any order. A subset of 80 participants were
additionally instructed to say aloud any words that were salient
during the recall phases following study lists in 6 of the 20
sessions (i.e., an externalized free recall procedure). Some
sessions additionally included a final free recall phase after the
recall phase for the last list in the sessions. For this final free
recall phase, participants were given 5 min to recall items from
any of the previous lists (for analyses that condition on recall
status, we considered recalls from both phases, but recalls
during final free recall phases mostly repeated recalls from
recall phases immediately following study lists). The recogni-
tion test always followed at the end of the session and consisted
of 320 probes of which 80, 75, 62.5, or 50% were targets (i.e.,
words that had been studied in any of the previous lists in the
current session) and the rest previously unstudied lure words.
The effect of the manipulation varying the proportion of targets
versus lures was small and is not further analyzed here (as
detailed below, the training of classifiers took the base rates of
the stimulus classes into account to avoid bias).

Throughout the experiment, we obtained high-density elec-
troencephalogram (EEG) recordings, allowing us to investigate
brain activity as it unfolds during processing of a memory
probe. Each recognition memory trial consisted of the presen-
tation of a probe word, which required a verbal response to the
question of whether the given item had been previously studied.
We asked participants to substitute “pess” and “po” for “yes”
and “no” when answering this question to facilitate determina-
tion of response times on the basis of the onset of the verbal
response (we excluded trials with response times below 300 ms
and above 3,000 ms from further analyses). Following each
binary recognition memory decision, we asked participants to
indicate their confidence in the response on a scale from 1 to 5,
with 5 indicating the highest level of confidence and 1 indicat-
ing low confidence. Most participants indicated confidence ratings
verbally; any reference to response times in this article is with
respect to the binary recognition decision and not the confidence
ratings. After each classification and confidence rating re-
sponse, participants pressed the space bar (the recognition
response times were determined on the basis of the onset of the
verbal recognition decision, however). Following a uniformly
randomly jittered interval between 100 and 200 ms after the
space bar press following the confidence rating, participants
received visual and auditory feedback on their recognition decision
(automatically generated by custom speech recognition software). An
800-1,200 ms (uniformly randomly jittered) blank screen sepa-
rated the offset of the feedback from the presentation of the
following recognition probe.
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Data Availability

De-identified data and analysis code used in this study may be
freely downloaded from the authors’ web sites (http://cogsci.info
and http://memory.psych.upenn.edu/Electrophysiological_Data).

EEG Data Collection and Processing

EEG data were recorded with 129 channel Geodesic Sensor
Nets using the Netstation acquisition environment (Electrical Geo-
desics, Inc.). Cz was used as a reference during recording, but all
recordings were converted to an average reference offline. For
most recording sessions, the EEG acquisition software logged
periods where the signal changed by more than 250 wV within a
short time period as artifactual. Channels where any such period
exceeded 10 min were excluded from the average reference. The
multivariate classifiers (described in the classification of EEG data
section) weigh neural features on the basis of their respective
signal to noise ratios and we evaluated their performance by
cross-validating on held-out data. Thus, we did not attempt to
further identify or remove any artifactual activity for our classifier
analyses. However, we did exclude 26 electrodes that were placed
on the face (rather than the scalp) from further analyses.

For event-related potential (ERP) analyses (see Figure 2), we
excluded channels with low absolute correlation with all other
channels and those with extreme levels of raw or log-transformed
variance both from the average reference and from the ERPs (we
used z-scores of =3 as exclusion thresholds). Additionally we
excluded events with significant eye-movement artifacts from the
ERP analyses (exclusion criteria were amplitudes in excess of
three times the interquartile range on channels around the eyes any
time from 100 ms before probe onset until 1,000 ms after probe
onset).

EEG data were partitioned into events starting 500 ms before the
onset of a test item and ending 100 ms before the onset of the
verbal recognition response. We applied a time-frequency decom-
position using Morlet wavelets with five cycles for 15 log-spaced
frequencies between 2 and 200 Hz, log-transformed the resulting
power values, and z-transformed these within session. We chose
this wide range of frequencies to ensure that we comprehensively
captured signals associated with cognitive processes. By separately
z-transforming power for each frequency within each session, we
removed the variability in baseline power-levels across frequen-
cies and sessions. The multivariate classifier (described in detail
below) could then weigh power at each frequency, electrode, and
time-point according to its predictive value.

We used a 1,500 ms buffer at the beginning of the events and
mirrored the last 1,500 ms at the end of each event to avoid edge
artifacts and to prevent EEG activity from periods during the
verbal recognition memory response from bleeding into the ana-
lyzed time bins (Cohen, 2014). With the exception of 13 sessions
across five participants (out of a total of 2,640 sessions across all
132 participants) where data were accidentally recorded at 250 Hz,
EEG was initially sampled at 500 Hz and down-sampled to 100 Hz
after wavelet transformation. We then discarded samples before
the onset of the test items, resampled power values for each event
to 360 samples, and averaged these samples into 36 equal-time
bins for the univariate analyses (see Figure 3) and into six equal-
time bins for the multivariate classifiers. The lengths of the indi-
vidual time bins were identical within each trial, but, because

A 03-04s

R-CR

U-CR

1.0
Time (s)

Figure 2. (A) Early (0.3-0.4 s) and late (0.5-0.6 s) event-related poten-
tial (ERP) difference effects for the contrasts between recalled hits (R) and
correct rejections (CR; top row), unrecalled hits (U) and CRs (middle row)
and between R and U (bottom row). Positive #-values (red) correspond to
more positive ERPs for R, U, and R trials, respectively. For each contrast
we used a permutation test to limit the family-wise error rate across both
time bins to 5% and set 7-values for contrasts that did not exceed the critical
t-values to 0. For electrodes where all participants contributed to the
contrast, the corresponding degrees of freedom were 131, but because we
excluded data from some electrodes that appeared noisy in a given partic-
ipant, this number represents an upper bound. (B) ERPs for R, U, and CR
trials at electrode Cz (on the top of the head). Points below the ERPs
indicate time points where the R versus CR, the U versus CR, and the R
versus U contrasts were significant with each contrast limiting the family-
wise error rate across all electrodes and time points to 5% using a permu-
tation test. See the online article for the color version of this figure.
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Figure 3. Differences in power for previously recalled versus not previously recalled hits (A) and for all targets
versus lures irrespective of response (B). Left and right panels show these differences for anterior and posterior
regions of interest (ROIs; illustrated in the middle panels), respectively, across frequencies and vincentized time
bins (mean times associated with some of the time bins are indicated on the abscissas). We used #-values for the
differences between trial categories for each participant to calculate t-values across participants. Red shades
indicate higher power for previously recalled hits (A) or for all targets (B) and blue shades indicate higher power
for not previously recalled hits (A) or for lures (B; within each panel, values that did not reach statistical
significance with a false discovery rate of .05 are set to white). See the online article for the color version of this

figure.

response times varied across trials, so did the lengths of the
(“vincentized”; Ratcliff, 1979) time bins. We chose to fix the
number of time bins to allow us to compare the neural signals
across trials as a function of the proportion of each trial’s response
time, but we also present some complementary analyses using
fixed-length (100 ms) time bins below. To aid with interpretation,
whenever reasonable, figures show mean times associated with
time bins rather than indicating the corresponding ordinal time bin
numbers.

Classification of EEG Data

We used the scikit-learn library (Pedregosa et al., 2011) to train
support vector machine classifiers with a radial basis function
(RBF) kernel for each participant using a leave-one-session-out
cross-validation procedure (all reported classifier results represent
the combined performance of 20 models for each participant,
where each of these models was trained on 19 lists and tested on
the held-out list). The RBF kernel takes the form H(u,v) = exp
( — yllu — vII?), where u and v are feature vectors and vy is a free
parameter specifying the width of the Gaussian RBF kernel that
determines the region of influence of any support vector. For very
large values of y (corresponding to a small variance of the Gauss-
ian kernel) the support vectors are minimally affected by other
training examples leading to a highly complex model that is prone
to overfitting. Very low values of vy (corresponding to a large
variance of the Gaussian kernel) make each support vector highly
dependent on the entire training set and, thus, result in highly
constrained models. The default setting for y in scikit-learn’s

svm.SVC class (using the “gamma=auto” option in its construc-
tor) is to set y to 1/n,, where n,. is the number of features—we
used this setting for all of our fits. Scaling vy by the number of
features counteracts the increased danger of overfitting with in-
creasing numbers of features by adjusting each support vector’s
region of influence to account for larger expected distances be-
tween feature vectors as the number of dimensions increase.

The z-transformed log-power values across all frequencies and
electrodes served as features for the multivariate classifiers. We
performed the z transformation separately for each frequency and
within each session and, thus, this transformation was completely
separate for training and testing data. These features came either
from individual time bins or from varying ranges of time bins
starting with the first time bin (bins 1-2, bins 1-3, bins 1-4, etc.).
We refer to classifiers trained on features from individual time bins
as “individual” classifiers and to classifiers trained on features
from multiple consecutive time bins starting with the first time bin
as “cumulative” classifiers.

In addition to the y parameter that specifies the width of the
RBF kernel (discussed above), a separate regularization parameter
(C in scikit-learn, in other contexts parameters with this function
are often labeled o or N\) determines the width of the margin
between the two classes that relates to the tolerance for miss-
classifying training exemplars. We used the default setting for this
parameter (C = 1.0) for all our fits. Because the number of
exemplars in each class varied from session to session (as de-
scribed in the methods the proportion of targets varied between 50
and 80%), we set up the classifiers such that the weights were
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adjusted inversely proportional to class frequencies (using “bal-
anced” as input to the “class_weight” keyword for the constructor
to scikit-learn’s svm.SVC class). This resulted in the regularization
parameter (C) for each class, i, to be set to ng/(2n;,), where ng is the
number of samples and 7, is the number of items in class i. This
prevented the classifiers from being biased toward predicting the
most frequent class.

For the classification of features from 100 ms time bins, we only
included trials where responses occurred 750 ms or more after
probe onset and only included the 100 (out of 132) participants
with at least 30 such trials in each session. Because we considered
the time bin starting at probe onset, as well as 11 additional time
bins that each had a 50 ms overlap with the previous time bin, this
ensured that the last time bin (ending 650 ms after the probe onset)
was separated from the response by at least 100 ms. These restric-
tions did not apply to classifiers using variable-length time bins
which we applied to the entire recognition periods until 100 ms
before response onset for all 132 participants.

Results

Traditionally, researchers have averaged voltage time series
from EEG recordings to obtain ERPs whose peaks and troughs can
be compared across conditions (Luck, 2005). Figure 2A shows
“early” (0.3—0.4 s) and “late” ERP (0.5-0.6 s) contrasts for com-
parisons between correctly recognized targets (“hits”) that were
previously recalled (R) and correct rejections (CR), between pre-
viously unrecalled (U) hits and CRs, as well as between R and U
trials. Even though there is considerable variability in the topog-
raphy and timing of such ERP contrasts in the literature (Paller,
Lucas, & Voss, 2012), the pattern of the contrasts between hits and
CRs is broadly similar to that of comparable contrasts in other
experiments (Burns, Tree, & Weidemann, 2014; Danker et al.,
2008). Consistent with the traditional interpretation of recognition
ERPs as reflecting an early familiarity signal and a late recollec-
tion signal (Wilding & Ranganath, 2012), ERPs at both time
intervals distinguished hits from CRs and the topography of these
contrasts differed across these intervals (Figure 2A). Studies of
testing effects in recognition memory have suggested that previous
recall of an item selectively enhances recollection in a recognition
memory test (Chan & McDermott, 2007). To the extent that this
conclusion holds, the fact that the difference in ERP contrasts for
previously recalled versus previously unrecalled hits was particu-
larly pronounced for the late interval, further supports the inter-
pretation of late ERP contrasts as reflecting a recollection signal.
Figure 2B illustrates this pattern in individual ERPs for R, U, and
CR trials recorded at electrode Cz (at the top of the head): ERPs
for hits and CRs separate early and remain separated for hundreds
of milliseconds, with ERPs for R and U trials only separating later.

ERPs mainly reflect phase-locked low-frequency power of the
underlying EEG activity and are less sensitive to other spectral
features that have been shown to reflect cognitive processes in-
volved in episodic memory (Jacobs, Hwang, Curran, & Kahana,
2006; Nyhus & Curran, 2010). For all of our remaining analyses,
we, therefore, decomposed the EEG signal into power across a
wide range of frequencies. Additionally, later time points in tra-
ditional ERP analyses frequently overlap with response periods.
To avoid analyzing neural activity associated with executing the
recognition response, we only analyzed brain activity up to 100 ms

before the onset of this response and used a mirrored buffer that
prevented any later brain activity from leaking into the analyzed
time period (Cohen, 2014; see Method for details).

Power Contrasts

Given that previous recall of an item has been linked to selec-
tively enhanced recollection (Chan & McDermott, 2007), we
aimed to identify any signals reflecting recollective processes by
contrasting spectral power for previously recalled and previously
unrecalled hits. Figure 3A shows the dynamic patterns of these
contrasts for sensors in two regions of interest (ROIs) that have
been frequently used in EEG investigations of familiarity and
recollection (Schwikert & Curran, 2014) with both ROIs yielding
broadly similar contrasts.

To directly track neural evidence distinguishing old from new
items, we also calculated contrasts between spectral power for
targets and lures irrespective of the subsequent response. Figure
3B shows that the pattern of these contrasts was remarkably
similar to those for contrasts between previously recalled and not
previously recalled hits (shown in Figure 3A). Under the assump-
tion that memory is strongest for previously recalled targets,
weaker for not previously recalled targets, and weakest/absent for
lures, the patterns in Figure 3 could reflect a single memory
strength signal that falls out of any contrast between two condi-
tions that vary in memory strength (Squire, Wixted, & Clark,
2007). The fact that these patterns changed quite drastically in the
lead-up to the memory decisions, however, might also reflect
independent sources of evidence with distinct time courses. An
assessment of the relative merits of these alternative accounts,
therefore, requires us to quantify the neural evidence in the trial-
by-trial variability of EEG activity that distinguishes between
targets and lures in the lead-up to a recognition memory decision.

Quantifying Neural Evidence

Despite previous efforts to relate the familiarity and recollection
components of dual-process models to different (temporally dis-
tinct) neural signals (Curran, 1999; Rugg & Curran, 2007), little is
known about the actual dynamics of information accumulation in
recognition memory decisions and how they relate to accuracy,
response times (RTs), and response confidence. Building on the
success of machine learning techniques in neural data analyses that
have provided unique insights into the dynamics of cognitive
processes (Anderson et al., 2016; Norman, Polyn, Detre, & Haxby,
2006; Philiastides & Sajda, 2006; Polyn, Natu, Cohen, & Norman,
2005; Ratcliff, Philiastides, & Sajda, 2009; Ratcliff et al., 2016),
we trained statistical classifiers on spectral EEG features to track
the neural dynamics of evidence accumulation during recognition
memory decisions. A classifier’s ability to distinguish targets from
lures can be directly compared with an individual’s recognition
memory performance through the use of receiver operating char-
acteristic (ROC) functions relating hits to “false alarms” (incorrect
classifications of lures as “old”). The area under an ROC curve
(AUC) serves as a convenient index of classification performance,
with an AUC of .5 indicating chance performance and an AUC of
1.0 indicating perfect classification (Fawcett, 2006). We previ-
ously used confidence ratings and latencies for binary recognition
memory decisions to generate ROC functions and showed a strong
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correspondence between the respective AUCs in the dataset from
which the current dataset was derived (Weidemann & Kahana,
2016). Here we assess the evolution of a neural signal indexing
evidence for the recognition memory decision by generating ROC
functions from the outputs of classifiers that were trained to
distinguish targets from lures using spectral EEG features from
various intervals during the recognition period. To reduce compu-
tational complexity and generate more reliable features for the
classifiers, we aggregated the time bins shown in Figure 3 by
averaging them in groups of six, partitioning each recognition
memory decision into six equal-time bins (see Method for details).

Neural evidence across the entire recognition period. For
each participant, we trained a classifier on spectral EEG features
from all six time bins to confirm (in held out sessions) that the
neural signal in individual trials reliably distinguished between
targets and lures (AUC = .71, #«(131) = 34.59, SE = 0.021, p <
.001; Figure 4A). Single-process models of recognition memory
commonly assume that evidence for targets is more variable than
that for lures (Wixted, 2007), with converging evidence for this
assumption coming from fits of detailed models of evidence ac-
cumulation (Ratcliff et al., 2016; Starns, 2014; Starns & Ratcliff,
2014). Larger target variability can result in increased AUCs that
are based only on old responses (or corresponding classifier out-
put) compared with those reflecting overt responses or classifier
output for “new” decisions only (Weidemann & Kahana, 2016),
but this pattern is also compatible with dual-process models.

Figure 4.

Conditional AUCs indicate how much signal the measure of in-
terest contains for each response class (beyond the signal con-
tained in the binary classification of test items as old or new;
Weidemann & Kahana, 2016) and were consistently larger for old
classifications across all measures (7(131) = 8.22-33.22, SE =
0.005-0.008, ps <.001).

In principle, a classifier trained on neural data to distinguish
targets from lures may use different signals than those that are
most important for the individual’s recognition memory decision.
Indeed, it is unlikely that the coarse measure of scalp EEG activity
(compressed into power for a small number of frequencies) could
reflect the neural signals leading to the recognition memory deci-
sion with high fidelity. In that light, it is of particular interest to
what extent the qualitative pattern of (conditional) AUCs is similar
across measures. Figure 4B illustrates similarly close relationships
between AUCs based on overt responses (AUC. and AUC;  with
the subscripts denoting confidence ratings and response latency,
respectively) and AUCs based on EEG-classifier output (AUCggg.
r = .71 and .76, t(130) = 11.53 and 13.36, ps <.001). We also
observed strong correlations between conditional AUCs based on
overt responses and EEG activity (Figure 4C; r = .17 — .81,
1(130) = 1.97 — 15.58, ps = .05).

Tracking neural evidence across time. Having established a
neural signal that reliably distinguishes between targets and lures
and that strongly correlates with recognition memory decisions, we
next asked how this evidence accrues over time. If different types

(A) Areas under the receiver operating characteristic (ROC) functions (AUCs) for confidence ratings,

response latencies, and electroencephalogram (EEG) activity. AUCs for conventional ROC functions are shown
in gray and those for conditional ROC functions based on only “old” or “new” responses (or corresponding
classifier output) are shown in red and blue, respectively. Error bars correspond to 95% confidence intervals. (B)
Scatter plots illustrating the relationships between AUCs for either confidence ratings (AUC; left panel) or
response latencies (AUC ; right panel) and EEG activity (AUCggg). (C) Scatter plots illustrating the relation-
ships between conditional AUCs for either confidence ratings (AUC; top panels) or response latencies (AUC; ;
bottom panels) corresponding to “old” (left panels) or “new” (right panels) recognition decisions and EEG
activity (AUCggg) for “old” and “new” classifications. Corresponding correlation coefficients are indicated in
the top left of each scatter plot and the main diagonals are shown for convenience. See the online article for the

color version of this figure.
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