is not to be disseminated broadly.

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user

MERICAN
SYCHOLOGICAL
ASSOCIATION

_a—
S\
P

Journal of Experimental Psychology:
Learning, Memory, and Cognition

© 2020 American Psychological Association
ISSN: 0278-7393

2021, Vol. 47, No. 4, 641-651
http://dx.doi.org/10.1037/xIm0000966

Neural Measures of Subsequent Memory Reflect Endogenous Variability in
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Human cognition exhibits a striking degree of variability: Sometimes we rapidly forge new associations
whereas at other times new information simply does not stick. Correlations between neural activity
during encoding and subsequent retrieval performance have implicated such “subsequent memory
effects” (SMEs) as important for understanding the neural basis of memory formation. Uncontrolled
variability in external factors that also predict memory performance, however, confounds the interpre-
tation of these effects. By controlling for a comprehensive set of external variables, we investigated the
extent to which neural correlates of successful memory encoding reflect variability in endogenous brain
states. We show that external variables that reliably predict memory performance have relatively small
effects on electroencephalographic (EEG) correlates of successful memory encoding. Instead, the brain
activity that is diagnostic of successful encoding primarily reflects fluctuations in endogenous neural
activity. These findings link neural activity during learning to endogenous states that drive variability in

human cognition.
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The capacity to learn new information can vary considerably from
moment to moment. We all recognize this variability in the frustration
and embarrassment that accompanies associated memory lapses. Re-
searchers investigate the neural basis of this variability by analyzing
brain activity during the encoding phase of a memory experiment as
a function of each item’s subsequent retrieval success. Across hun-
dreds of such studies, the resulting contrasts, termed subsequent
memory effects (SMEs), have revealed reliable biomarkers of suc-
cessful memory encoding (Hanslmayr & Staudigl, 2014; Kim, 2011;
Paller & Wagner, 2002).
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A key question, however, is whether the observed SMEs indicate
endogenously varying brain states, or whether they instead reflect
variation in external stimulus- and task-related variables, such as item
difficulty or proactive interference, known to strongly predict subse-
quent memory (Kahana, Aggarwal, & Phan, 2018). It is tempting to
attribute SMEs to endogenous factors affecting encoding processes
and/or to specific experimental manipulations (such as encoding in-
structions) aimed at directly affecting these processes (Fellner, Bauml,
& Hanslmayr, 2013; Hanslmayr, Spitzer, & Biauml, 2009; Hanslmayr
& Staudigl, 2014). At the same time, some of the strongest predictors
of recall performance are characteristics of individual items (e.g.,
preexperimental familiarity or position in the study list; DeLosh &
McDaniel, 1996; Merritt, DeLosh, & McDaniel, 2006; Murdock,
1962) whose effects are difficult to distinguish from those of endog-
enous factors, given that the successful retrieval of individual items is
not under direct experimental control. Such idiosyncratic effects are
therefore serious confounds in SME analyses and the relative contri-
butions of endogenous and external factors to the SME have yet to be
established.

Here we approach these challenges in two ways using a large
free-recall data set comprising 97 individuals who each had their
EEG recorded while they studied and recalled 24 word lists in each
of at least 20 experimental sessions that took place over the course
of several weeks. As shown in Figure 1a, the presentation of each
list was followed by a distractor task and a free recall test. Each list
contained 24 words and the same 576 words (24 words in 24 lists)
were presented in each session, but their assignment to lists, and
serial positions within lists, varied (we also refer to individual
word presentations as “items” irrespective of the word identities).
Our first approach closely builds on standard SME analyses that
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distractor task, and a free recall test. There were 24 of these trials in each experimental session and each study
list consisted of 24 items. See methods for details (b). z-transformed power around the presentation of study
words during the beginning and end of one participant’s (ID: 374) 4th study list in the 16th experimental session.
The study words are indicated at the top of each subpanel with bold italic font indicating subsequent recall (c).
Average power for subsequently unrecalled (left) and subsequently recalled (right) words during study across all
lists from all participants (we averaged all data within participants and calculated the shown z-values across
participants). All of our analyses were based on neural activity between 0.3 and 1.6 s following study word onset
(indicated with vertical black lines) and the average power across this time interval is also illustrated. For this
visualization, we aggregated EEG activity across 28 superior electrodes (see methods for details). See the online
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compute a contrast for neural activity during each item’s presen-
tation in the study list. Rather than only predicting subsequent
memory as a binary variable, however, we also statistically ac-
counted for a comprehensive set of external factors that correlate
with recall performance and computed SMEs for the correspond-
ing residuals. Whereas residuals of statistical models are often
treated as “noise,” here they reflect variability in recall perfor-
mance that was not accounted for by external factors and they thus
highlight contributions of endogenous factors to the SME. Com-
paring SMEs for these residuals with the standard item-level SME
predicting binary retrieval success thus allowed us to estimate the
relative contributions of endogenous neural variability and exter-
nal factors to the SME (to the extent that SMEs are driven by
external factors, SMEs should be absent when the effects of these
external factors are statistically removed from recall performance).

For our second approach we calculated list-level SMEs (rather
than the standard item-level SMEs), leveraging evidence that en-
dogenous factors associated with cognitive function vary slowly.
Specifically, sequential dependencies in human performance as
well as investigations of endogenous neural fluctuations that drive
variability in evoked brain activity and overt behavior suggest that
endogenous factors operate at time scales that are slower than the
time allocated to the study of individual items in standard memory
tasks (many seconds or minutes rather than a few seconds or less;
Arieli, Sterkin, Grinvald, & Aertsen, 1996; Fox & Raichle, 2007;
Fox, Snyder, Vincent, & Raichle, 2007; Fox, Snyder, Zacks, &
Raichle, 2005; Gilden, Thornton, & Mallon, 1995; Kahana et al.,
2018; Monto, Palva, Voipio, & Palva, 2008; Mueller & Weide-

mann, 2008; Raichle, 2015; Schroeder & Lakatos, 2009; Ver-
planck, Collier, & Cotton, 1952). To calculate list-level SMEs, we
averaged epochs of EEG activity following the presentation of
individual study items within each list and used these list-averaged
epochs to predict the proportion of recalled words in each list. This
approach eliminates or severely reduces the effects of item-
specific external factors (because we are averaging neural activity
across all study periods in a list), but the list-level SME could still
reflect other external factors that also affect recall performance
(such as session-level time-of-day effects or list-level proactive
interference effects; Kahana et al., 2018). We therefore also sta-
tistically removed effects of list and session number (as well as
effects of the average “recallability” of the words comprising each
list; see methods for details) and computed SMEs for the corre-
sponding residuals. As with the item-level SMEs, these residuals
highlight contributions of endogenous factors. Comparing the
SMEs for list-level recall to the SMEs for residuals of list-level
recall after accounting for external factors associated with each list
and experimental session thus allowed us to estimate the extent to
which list-level SMEs are driven by endogenous factors associated
with encoding success.

Method

Participants

We analyzed data from 97 young adults (18-35) who completed
at least 20 sessions in Experiment 4 of the Penn Electrophysiology
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of Encoding and Retrieval Study (PEERS) in exchange for mon-
etary compensation. This study was approved by the Institutional
Review Board at the University of Pennsylvania and we obtained
informed consent from all participants. Recall performance for a
large subset of the current data set was previously reported (Ka-
hana et al., 2018), but this is the first report of electrophysiological
data from this experiment. Data from PEERS experiments are
freely available at http://memory.psych.upenn.edu and have been
reported in several previous publications (Healey, Crutchley, &
Kahana, 2014; Healey & Kahana, 2014, 2020; Lohnas & Kahana,
2013; Lohnas, Polyn, & Kahana, 2015; Siegel & Kahana, 2014;
Weidemann & Kahana, 2016, 2019). Our analyses included data
from all participants with at least 20 sessions.

Experimental Task

Each of up to 23 experimental sessions consisted of 24 study
lists that each were followed by a delayed free recall test. Specif-
ically, each study list presented 24 session-unique English words
sequentially for 1,600 ms each with a blank interstimulus interval
that was randomly jittered (following a uniform distribution) be-
tween 800 and 1,200 ms. After the last word in each list, partici-
pants were asked to solve a series of arithmetic problems of the
form A + B + C = ? where, A, B, and C were integers in [1, 9].
Participants responded to each problem by typing the result and
were rewarded with a monetary bonus for each correctly solved
equation. These arithmetic problems were displayed until 24 s had
elapsed and were then followed by a blank screen randomly
jittered (following a uniform distribution) to last between 1,200
and 1,400 ms. Following this delay, a row of asterisks and a tone
signaled the beginning of a 75 s free recall period. A random half
of the study lists (except for the first list in each session) were also
preceded by the same arithmetic distractor task which was sepa-
rated from the first study-item presentation by a random delay
jittered (following a uniform distribution) to last between 800 and
1,200 ms. Each session was partitioned into 3 blocks of 8 lists each
and blocks were separated by short (approximately 5 min) breaks.
At each session participants were asked to rate their alertness and
indicate the number of hours they had slept in the previous night.

Stimuli

Across all lists in each session the same 576 common English
words (24 words in each of 24 lists) were presented for study, but
their arrangement into lists differed from session to session (sub-
ject to constraints on semantic similarity; Healey et al., 2014).
These 576 words were selected from a larger word pool (compris-
ing 1,638 words) used in other PEERS experiments. The 576-word
subset of this pool used in the current experiment is included as
online supplementary material and ranged in arousal (2.24-7.45,
M = 4.04) and valence (1.71-8.05, M = 5.52) according to
independent ratings on these dimensions on scales between 1 and
9 (Warriner, Kuperman, & Brysbaert, 2013). Many participants
also returned for a 24th session that used words from the entire
1,638-word pool, but we are not reporting data from that session
here. We estimated the mean recallability of items in a list from the
proportion of times each word within the list was recalled by other
participants in this study.

EEG Data Collection and Processing

Electroencephalogram (EEG) data were recorded with either a
129 channel Geodesic Sensor net using the Netstation acquisition
environment (Electrical Geodesics, Inc.; EGI) or with a 128 chan-
nel Biosemi Active Two system. EEG recordings were rerefer-
enced offline to the average reference. Because our regression
models weighted neural features with respect to their ability to
predict (residuals of) recall performance in held out sessions, we
did not try to separately eliminate artifacts in our EEG data. Data
from each participant were recorded with the same EEG system
throughout all sessions and for those sessions recorded with the
Geodesic Sensor net, we excluded 26 electrodes that were placed
on the face and neck, rather than the scalp, from further analyses.
For the visualization of EEG activity in the figures, we aggregated
over electrodes 4, 5, 12, 13, 19, 20, 24, 28, 29, 37, 42, 52, 53, 54,
60, 61, 78, 79, 85, 86, 87,92, 93, 111, 112, 117, 118, and 124 for
the EGI system and electrodes AS, A6, A7, A18, A31, A32, B2,
B3, B4, B18, B19, B31, B32, C2, C3, C4, Cl11, C12, C24, C25,
D2, D3, D4, D12, D13, D16, D17, and D28 for the Biosemi
system. These correspond to the superior regions of interest we
used previously (Weidemann, Mollison, & Kahana, 2009). All of
our classification and regression models, however, used measures
from all individual electrodes (with the exception of those cover-
ing the face and neck for the EGI system) as input without any
averaging across electrodes. The EGI system recorded data with a
0.1 Hz high-pass filter and we applied a corresponding high-pass
filter to the data collected with the Biosemi system. We used MNE
(Gramfort et al., 2013, 2014), the Python Time-Series Analysis
(PTSA) library (https://github.com/pennmem/ptsa_new), Sklearn
(Pedregosa et al., 2011) and custom code for all analyses.

We first partitioned EEG data into epochs starting 800 ms
before the onset of each word in the study lists and ending with its
offset (i.e., 1,600 ms after word onset). We also included an
additional 1,200 ms buffer on each end of each epoch to eliminate
edge effects in the wavelet transform. We calculated power in 15
logarithmically spaced frequencies between 2 and 200 Hz, applied
a log-transform, and down-sampled the resulting time series of
log-power values to 50 Hz. We then truncated each epoch to
300-1,600 ms after word onset. For the item-based models we
used each item’s z-transformed mean power in each frequency
across this 1,300 ms interval as features to predict (residual)
subsequent recall. For the list-based regression models we aver-
aged these values across all items in each list to predict (residuals
of) list-level recall.

Removing Effects of External Factors

For the item based analyses we fit logistic regression models
separately for each participant to predict each item’s recall from its
average recallability (i.e., it’s average probability of recall calcu-
lated from all other participants’ recall data), its serial position
within the study list, the list number within the current session, and
the session number within the experiment. We treated all of these
predictors, except for recallability, as categorical to accommodate
any functional relationship between them and recall performance.
This allowed us to use list and session number as predictors to
model the combined effects of list and session-specific external
factors rather than attempting to capture each of them separately.
Furthermore, fitting these models separately to each participant’s
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data allowed us to accommodate potentially idiosyncratic relation-
ships between external factors and the predictors in our model as
well as those between external factors and recall performance. We
then calculated residuals from the full model including all item-
level predictors as well as from nested models including all but one
of the predictors as described in the main text. Residuals from
logistic regression models are constrained to fall between —1 and
1 (assuming the two possible outcomes are coded as 0 and 1). To
make these residuals more similar to those from the linear regres-
sion models, we transformed the residuals to fall between 0 and 1

(just like list-level recall probabilities) and then applied a logit-

(res+1)2
transform: res, = |- )2’ where res, and res are the transformed

and untransformed residuals respectively. All references to resid-
uals from logistic regression models in other parts of this paper
refer to transformed residuals.

For the list-based analyses we proceeded similarly, fitting linear
regression models separately for each participant to predict the
logit transformed probability of recall for each list (i.e., the pro-
portion of words that were recalled in each list). We used the
average recallability of words within each list, list number within
each session, and session number within the experiment as pre-
dictors (treating list and session number as categorical predictors).
We again calculated residuals for the full model and also for two
nested models: one including average recallability for each list and
list number (list-level predictors) and one only including session
number (session-level predictor).

Item-Based Classifier

For the item-based classifier we used a nested cross-
validation procedure to simultaneously determine the regular-
ization parameter and performance of L2-regularized logistic
regression models predicting each item’s subsequent recall. We
applied this nested cross-validation approach separately to the
data from each participant to accommodate idiosyncratic rela-
tionships between brain activity and recall performance and
interindividual differences in signal quality. At the top level of
the nested cross-validation procedure we held out each session
once—these held out sessions were used to assess the perfor-
mance of the models. Within the remaining sessions, we again
held out each session once—these held-out sessions from
within each top-level cross-validation fold were used to deter-
mine the optimal regularization parameter, C, for Sklearn’s
LogisticRegression class. We fit models with 9 different C
values between 0.00002 and 1 to the remaining sessions within
each cross-validation fold and evaluated their performance as a
function of C on the basis of the held out sessions within this
fold. We then fit another logistic regression model using the
best-performing C value to all sessions within each cross-
validation fold and determined the model predictions on the
sessions that were held-out at the top level. We determined the
performance of our models solely on the basis of the predictions
from these held-out sessions. There are many reasonable alter-
natives for setting up these models; our choice of L2 regular-
ization was motivated by good performance of these models in
similar data sets (Weidemann & Kahana, 2019; Weidemann et
al., 2019), and not informed by the current results.

Item and List-Based Regression Models

For the item- and list-based regression models we followed the
same procedure as for the item-based classifier to determine the
optimal level of regularization for L2 regularized linear regression
models predicting residuals of item-level recall or (residuals of)
list-level recall performance. Specifically, we used the same nested
cross-validation procedure described above to determine optimal
values for a (corresponding to 1/C), the regularization parameter
in Sklearn’s Ridge class, testing 9 values between 1 and 65,536.
We applied these models to the (logit-transformed) proportion of
items recalled for each list and to the residuals from the various
item- and list-level models as described above. Thus, in cases
where we investigated the effects of external factors on recall
performance, we first fit a regression model predicting recall
performance on the basis of the external factors (as described
above in the “Removing effects of external factors” section) and
then used a ridge regression model to predict the residuals from
that model fit (“residual recall performance”) on the basis of brain
activity.

Shuffled Control Lists

For our list-level analyses we also computed SMEs for shuffled
control lists to investigate the extent to which SMEs were linked to
individual item properties or instead relied on slowly varying
endogenous factors. If the list-level SME is merely an average of
individual item level SMEs, shuffling individual items (together
with the corresponding neural activity) should not affect the list-
level SME as long as the shuffled lists contain the same number of
subsequently recalled and not subsequently recalled items. Effects
of slowly varying endogenous factors would, however, be dis-
rupted if items and associated neural activity were rearranged. For
this approach, we separated all recalled and unrecalled items
(together with the corresponding neural activity) in each session,
shuffled both sets of items separately (keeping each item linked
with its neural activity), and then synthesized new lists with the
original proportions of recalled and unrecalled items from the
shuffled pools of recalled and unrecalled items. We repeated this
procedure 20 times for each participant and concatenated the
resulting shuffled lists. This shuffled session thus consisted of 20
copies of each item synthesized into 480 lists that matched the
recall performance of the 24 original lists (the performance of each
original list was represented 20 times in the shuffled session). We
then applied all of our list-level SME analyses to these shuffled
lists. Specifically, we predicted (residuals of) list-level recall per-
formance on the basis of the neural data associated with the items
making up the synthesized lists.

Results

The standard item-level subsequent memory analysis contrasts
neural activity during the encoding of subsequently recalled and
nonrecalled items. The present experiment sequentially displayed
lists of items (words) for study and tested memory in a delayed
free-recall task (Figure la). During the encoding period of each
studied item, we calculated the spectral power of the EEG signal
at frequencies between 2 and 200 Hz. Figure 1b shows an excerpt
of an actual study list with associated z-transformed spectral
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power, shown as a joint function of encoding time and frequency
for each excerpted item. The average time-frequency spectrogram
for recalled and nonrecalled items, shown in Figure 1c, illustrates
the spectral subsequent memory effect reported in prior studies
(Hanslmayr & Staudigl, 2014; Paller & Wagner, 2002). Specifi-
cally, subsequently recalled items exhibit greater high frequency
(>30 Hz) activity and reduced alpha power (8—12 Hz) as com-
pared with not-recalled items. Before commencing our analyses
we had decided to focus on a time window between 0.3 and 1.6 s
following the onset of each study item to maximize our chance of
capturing item-specific effects in our SME contrasts. However, as
is evident in Figure lc, the SME was sustained throughout the
entire 1.6 s during which the item appeared on the screen and also
in the prestimulus interval (consistent with previous reports of
prestimulus SMEs; Fellner et al., 2013; Guderian, Schott,
Richardson-Klavehn, & Duzel, 2009; Otten, Quayle, Akram, Dite-
wig, & Rugg, 2006; Park & Rugg, 2010; Sweeney-Reed et al.,
2016; Urgolites et al., 2020).

The power of the SME analysis lies in its ability to reveal
encoding processes that lead to successful recall. However, the
standard item-level SME conflates a multitude of factors that
determine the recallability of any given item. The position of an
item in the study list constitutes one such factor. The top of Figure
2 illustrates the serial position effect in our delayed free-recall
experiment. As expected based on prior work, we observed supe-
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rior recall for early list items (the so-called primacy effect). The
mental arithmetic task between study and test attenuates the re-
cency effect that is typical of immediate recall (Murdock, 1962).
Given the strong effect of serial position on recall performance, we
can expect any SME to also reflect a contrast of neural activity
associated with different serial positions. The second row of Figure
2 shows the neural activity associated with the encoding interval at
each serial position irrespective of recall status. Here one sees a
marked shift in neural activity across serial positions: Neural
activity at early serial positions resembles that associated with
recalled items and that at later serial positions is similar to that
associated with not-recalled items (cf. Figure Ic). The last two
rows of Figure 2 illustrate that this pattern is not simply due to the
confound between recalled status and serial position: Even when
we plot the pattern of spectral activity as a function of serial
position separately for recalled and not-recalled items, neural
activity at early serial positions resembles that associated with
recalled items and that at later serial positions is more similar to
that associated with not-recalled items in the standard SME (cf.
Figure 1c). This illustrates how the subsequent memory analysis
can be misleading: differences between recalled and nonrecalled
items may be indexing differences between primacy and nonpri-
macy items. Controlling for the effect of serial position represents
a logical solution to this problem. However, serial position is but
one of many variables known to influence recall performance. We
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Figure 2. Mean probability of recall as a function of serial position across all participants (top row) and
associated neural activity (averaged between 0.3 and 1.6 s after the onset of study items) for all, subsequently
recalled, and subsequently not-recalled trials respectively (we averaged all data within participants and calcu-
lated the shown -values across participants). Error bars indicate 95% confidence intervals. For this visualization,
we aggregated EEG activity across 28 superior electrodes (see methods for details). See the online article for the

color version of this figure.
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thus introduce a statistical framework to separate the effects of
known external factors from the hypothesized endogenous vari-
ability driving encoding success, as described below.

Our analytic approach combines multivariate classification of
neural data (Ezzyat et al., 2018; Weidemann & Kahana, 2019;
Weidemann et al., 2019) with a multifactor model of external
variables shown to influence item-level recall performance (Ka-
hana et al., 2018). To implement a multivariate analogue to the
standard SME analysis, we trained L2 regularized logistic regres-
sion classifiers using brain activity to predict the recall status of
individual items (the performance of these models indexes what
we refer to as an “uncorrected SME”). We also trained L2 regu-
larized linear regression models using brain activity to predict
residuals of recall performance after statistically controlling for the
effects of external factors that also predict recall performance (the
performance of these models indexes what we refer to as a “cor-
rected SME”).

For both uncorrected and corrected SMEs, we evaluate how well
each model predicts (residuals of) recall performance in held out
sessions. Typical metrics of model performance differ between
binary classification (as in our uncorrected SME analyses) and
continuous regression models (as in our corrected SME analyses).
To directly compare both types of SMEs, we computed correla-
tions between model predictions and (residual) recall performance.
For the uncorrected SME, this is a point-biserial correlation be-
cause recall performance is a binary variable (each item is either
recalled or not) and the model prediction is a continuous measure
corresponding to the predicted recall probability of each item. For
the corrected SME, this is a standard product-moment correlation
between the continuous residual recall performance and the con-
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tinuous model prediction (see “Method” for details). Both of these
models use spectral features of EEG activity during word encoding
to predict that item’s (residual) recall status.

The correlation between model predictions and (residual) item-
level recall performance quantifies the association between neural
features during encoding and subsequent (residual) recall perfor-
mance—it serves as our multivariate SME measure. The top of
Figure 3a shows the distribution of these correlations across par-
ticipants for the uncorrected SME (distribution marked “item”)
relating neural features to the recalled status of individual items.
This uncorrected SME was significant (M = 0.16, #(96) = 22.681,
SE = 0.007, p < .001, d = 2.303) indicating that the different
average activity patterns for recalled and not-recalled items shown
in Figure lc were indeed associated with a reliable item-level
SME. The next distribution (labeled “itemlall”) corresponds to the
corrected SME statistically controlling for all external factors.
Specifically, these correlations quantify the relation between neu-
ral features and the residuals of logistic regression models predict-
ing recall status on the basis of individual item-recallability, serial
position, list number within the current session, and session num-
ber within the experiment. This corrected SME, was also statisti-
cally significant (M = 0.12, #(96) = 19.015, SE = 0.006, p < .001,
d = 1.931), indicating a substantial SME, even after controlling for
external factors. The size of this SME was somewhat smaller than
that for the uncorrected recall performance, #(96) = 9.738, SE =
0.004, p < .001, d = 0.989 reflecting the fact that the uncorrected
SME does include the effects of some external factors.

To better understand how the different factors affect the SME,
we repeated this analysis, but held out each of the external factors
in turn. Specifically we computed four partially corrected SMEs
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(a) Distribution of uncorrected item-level SMEs (“item”) across all participants and of corresponding
corrected SMEs accounting for all factors or all but the indicated factor respectively (a — prefix signifies that
the indicated factor was omitted). Overlaid boxplots indicate the quartiles of the distribution with a notch
showing the bootstrapped 95% CI around the median. Whiskers extend to 1.5 X the interquartile range (b). Mean
correlations between power at different frequencies (aggregated across 28 superior electrodes) and the respective
(residuals of) item-level recall performance across all participants (lined up with the corresponding SMEs in
Panel a). The black horizontal lines indicate zero. Error regions indicate 95% Cls. See the online article for the
color version of this figure.
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that each omitted one external factor. The remaining parts of
Figure 3a show the results of these analyses without controlling for
the effects of recallability, serial position, list number, and session
number respectively. All resulting SMEs are positive (M = 0.11-
0.15, 1(96) = 16.341-22.471, SE = 0.006—0.007, ps < 0.0001,
d = 1.659-2.282) and significantly different from the SME for
uncorrected recall performance (#(96) = 4.726-13.438, SE =
0.003-0.004, ps < 0.001, d = 0.479-1.364) as well as from that
correcting for all external factors (#(96) = 5.939-10.790, SE =
0.001-0.003, ps < 0.001, d = 0.603-1.096). This indicates that
each of the external factors contributes to the difference between
the size of the uncorrected and the corrected SME and that none of
these factors can account for this difference in isolation. Serial
position, however, explains most of this discrepancy—when con-
trolling for all other factors, the corresponding SME is almost as
large as the uncorrected SME (mean correlation of 0.15 as opposed
to 0.16) and additionally also controlling for serial position is
responsible for reducing the SME to a mean correlation of 0.12.

To the extent that the uncorrected SME reflects both endoge-
nous and external factors, we would expect that statistically re-
moving the effects of external factors would reduce the size of the
SME. Correspondingly, only partially removing effects of external
factors (e.g., by holding out the removal of one of the external
factors like we did in the analyses described above) should result
in SMEs that fall somewhere between the uncorrected SME and
the SME correcting for more external factors. This is the pattern
we observed, with one exception: when we statistically removed
the effects of all factors except for the session number, the result-
ing SME was slightly smaller than that for the SME also removing
that effect (mean correlation of 0.11 as opposed to 0.12). This
indicates that recall performance varies with session number, but
that this effect of session number is not effectively captured by our
measures of brain activity. Hence, when we statistically controlled
for the effects of session number we removed variability in recall
performance that we could not account for with our measures of
brain activity, leading to a slightly larger SME (and, conversely, a
failure to remove the effects of session number reduced the SME).

As Figure 3a also shows, there was substantial overlap between
the distributions for the uncorrected and corrected SMEs demon-
strating that the effects of external factors were small relative to
the size of the SME. Specifically, the effect sizes associated with
the uncorrected and corrected SMEs corresponded to Cohen’s
(Cohen, 1988) ds of 2.303 and 1.931, respectively (with the
Cohen’s ds for corrected SMEs holding out one of the factors
ranging between 1.659 and 2.282). The difference between the
uncorrected and corrected SME was about half that size (Cohen’s
d of 0.989 and 0.479-1.364 for the differences between the un-
corrected SME and the corrected SMEs holding out one of the
factors). Another way to interpret the sizes of the uncorrected and
corrected SMEs relative to their difference is by directly evaluat-
ing the corresponding correlations and their difference. According
to Cohen’s convention, the correlations for all SMEs correspond to
a small effect size (0.1 < r < .3). Differences in correlations can
be assessed with Cohen’s ¢ (i.e., the difference between the
Fisher-z transformed correlations) which is 0.041 for the difference
between the uncorrected and corrected SME (and ranges between
0.018 and 0.054 for the differences between the uncorrected SME
and the corrected SME holding out one of the factors)—all well

below the threshold Cohen proposed for a small effect (0.1 < g <
0.3).

Figure 3b shows correlations between power at different fre-
quencies and (residual) recall performance to help illustrate the
importance of different features for our regularized logistic and
linear regression models relating brain activity to (residual) recall
performance. Across all measures of (residual) recall performance,
correlations with spectral power were more negative in the o range
(around 10 Hz) and less negative at higher and lower frequencies.
The correlations between power and uncorrected item-level recall
were positive for frequencies in the y range (>40 Hz)—an effect
that was substantially reduced for all item-level residuals, except
for that not correcting for serial position. This suggests that pos-
itive correlations between y power and recall performance largely
reflect serial position effects (see also Figure 2).

Rather than statistically controlling for factors that were specific
to individual items (i.e., serial position and recallability), our
list-level SME eliminates or severely reduces these factors by
averaging brain activity over the encoding epochs to predict (re-
siduals of) the proportion of recalled items in each list. Because
each list contained the same number of items, effects of serial
position averaged out, eliminating this factor from affecting list-
level SMEs. Even though recallability is specific to individual
items, lists could vary with respect to the average recallability of
their constituent items. We therefore considered not only list
number and session number, but also average recallability of items
within the list as external factors to control for in our calculation
of corrected list-level SMEs. As for our item-level SMEs, we
quantify list-level SMEs by calculating the correlations between
predictions from L2 regularized linear regression models and
(residual) recall performance.

The top of Figure 4a (labeled “list”) shows the distribution of
the uncorrected list-level SME (M = 0.26, 1(96) = 18.213, SE =
0.015, p < .001, d = 1.849). It is tempting to compare the size of
this list-level SME to the item-level SME shown at the top row of
Figure 3a, but such direct comparisons are difficult to make
sensibly. The EEG features driving the list-level SME were aver-
aged across all study epochs within each list, whereas the item-
level SME relied on features from individual epochs. Thus the
neural features making up the item and list-level SMEs may differ
substantially in their respective signal to noise ratios and the
number of observations contributing to these different kinds of
SMEs also differed considerably (in our case by a factor of 24,
because each list consisted of 24 items).

To calculate corrected list-level SMEs, we fit linear regression
models to predict list-level recall performance on the basis of
average recallability of items in that list, list number, and session
number. We then used brain activity to predict residual list-level
recall performance. The second row of Figure 4a (labeled “listlall”)
shows this corrected list-level SMEs (M = 0.22, #(96) = 14.332,
SE =0.015, p < .001, d = 1.455). This effect was smaller than the
uncorrected list-level SME, #96) = 5.548, SE = 0.008, p < .001,
d = 0.563, reflecting the fact that external factors do contribute to
the uncorrected list-level SME. The fact that we could demonstrate
a sizable corrected list-level SME, however, supports our previous
result that external factors are not critical drivers of the SME.

To better understand the extent to which list and session-level
external factors contribute to the list-level SME, we statistically
controlled for average recallability of items within each list and list
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(a) Distribution of uncorrected list-level SMEs (“list”) across all participants and of corresponding

corrected SMEs accounting for all factors or only the indicated ones (here “list #” refers to the joint effects of
both list number and average recallability of words in each list). Boxplots are as in Figure 3. (b) Mean
correlations between power at different frequencies (aggregated across 28 superior electrodes) and the respective
(residuals of) list-level recall performance across all participants (lined up with the corresponding SMEs in Panel
a). The black horizontal lines indicate zero. Error regions indicate 95% Cls. See the online article for the color

version of this figure.

number (list-level effects; third row of Figure 4b labeled
“listllist#”) and, separately, for session number (session-level ef-
fects; fourth row of Figure 4b labeled “listlsession#”). The corre-
sponding SMEs were significant (M = 0.16 and 0.32, #96) =
12.668 and 20.132, SE = 0.013 and 0.016, respectively, both ps <
0.001, d = 1.286 and 2.044, respectively). Their sizes, however,
fell outside the range spanned by the SME controlling for all
external factors and the uncorrected SME. The SME correcting for
list-level factors was smaller than that correcting for all external
factors and the uncorrected SME (#(96) = 11.606 and 12.466,
SE = 0.005 and 0.008, respectively, both ps < 0.001, d = 1.178
and 1.266, respectively), whereas the SME correcting for session
was larger than both (#(96) = 13.134 and 13.950, SE = 0.009 and
0.005, respectively, both ps < 0.001, d = 1.333 and 1.416,
respectively). This pattern confirms our previous finding that
our measures of brain activity did not effectively capture
session-level external factors that affect recall performance.
Hence, statistically controlling for their effects enhances our
ability to predict residual recall performance from brain activity
whereas a failure to remove that variability from recall perfor-
mance reduces the SME.

As for the item-level SMEs, Figure 4a shows substantial overlap
between the distributions for the uncorrected and corrected list-
level SMEs. Analyses of corresponding effect sizes confirm that
here, too, effects of external factors were small relative to the size
of the SME. Specifically Cohen’s d for the uncorrected and cor-
rected SMEs were 1.849 and 1.455, respectively (corresponding ds
for the corrected SME considering only list or session-related
factors were 1.286 and 2.044, respectively). The size of the dif-
ference between the uncorrected and the corrected SME was only
about a third (d = 0.563) of the individual effects (but, d = 1.266
and 1.416 for the corrected SMEs only accounting for list and
session-related factors, respectively). As before, we can also in-
terpret the size of these effects by considering the corresponding
correlations directly. From that perspective, the uncorrected and all
corrected SMEs correspond to small effects (0.1 < r <.3) whereas
the differences between the uncorrected and the corrected SME

falls short of a small effect (¢ = 0.047; corresponding gs for the
differences with corrected SMEs considering only list or session-
related factors were 0.1 and 0.07, respectively).

Just as in Figure 3b, Figure 4b shows the correlations between
power in different frequencies and (residuals of) recall perfor-
mance. The qualitative pattern of these correlations aligned with
the pattern for item-level SMEs with more negative correlations in
the a range and less negative correlations at lower and higher
frequencies. Positive correlations between y power and (residuals
of) list-level recall performance were absent, supporting our pre-
vious interpretation that these positive correlations in item-level
SMEs are largely driven by serial position effects (which are
averaged out in the list-level analyses).

The presence of a robust list-level SME is compatible with
endogenous factors that vary slowly (over many seconds or min-
utes) rather than with the presentation of individual items during
the study list. Indeed, to the extent that factors driving the SME are
closely linked to the presentation of individual items, characteriz-
ing these factors as “endogenous” would be problematic. To in-
vestigate the extent to which factors predicting subsequent recall
are tied to individual items rather than varying more slowly over
the study periods we constructed shuffled lists that mirrored the
distribution of recall performance, but synthesized lists from ran-
domly selected items within each session. Figure 5 shows the
list-level SMEs for these shuffled lists. As is evident from the
Figure, this shuffling procedure practically eliminated the SME.
High statistical power resulted in statistically significant deviations
from zero, but the largest shuffled SME corresponded to a mean
correlation of 0.03 with the residual recall performance after
accounting for session effects which was an order of magnitude
smaller than the corresponding unshuffled SME. All shuffled
SMEs were significantly smaller than the corresponding un-
shuffled ones (#(96) = 14.286-20.361, SE = 0.013-0.016, ps <
0.001, d = 1.450-2.067), supporting our previous result that
(slowly varying) endogenous factors (rather than item-specific, or
otherwise external, factors) are the main drivers of the SME.
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Figure 5. Distribution of uncorrected list-level SMEs (“list”) across all
participants for synthesized lists made up from randomly selected items
within a session (see methods for details) and of corresponding corrected
SMEs accounting for all factors or only the indicated ones (here “list #”
refers to the joint effects of both list number and average recallability of
words in each list). Boxplots are as in Figures 3 and 4. See the online article
for the color version of this figure.

Discussion

The subsequent memory analysis of neural data has provided
researchers with a powerful tool for uncovering the brain mecha-
nisms that underlie successful memory formation. Armed with this
methodology, cognitive neuroscientists have conducted hundreds
of experiments, using a wide range of recording techniques, seek-
ing to elucidate the brain signals and networks that accompany
memory acquisition. Yet, despite an impressive body of data
amassed in recent decades, key questions about the neural corre-
lates of memory acquisition remain unanswered. Specifically, to
what extent do these neural correlates reflect known external
factors that determine memorability, or endogenously varying
brain states that determine the efficiency of memory acquisition?
Prior research suggests that both external and endogenous factors
play a role: On the one hand, experimental manipulations of item
encoding affect the SME (Fellner et al., 2013; Otten & Rugg,
2001; Staudigl & Hanslmayr, 2013), suggesting a role for external
factors. On the other hand, neural activity prior to item onset
predicts subsequent memory, suggesting a role for endogenous
factors unrelated to item processing (Fellner et al., 2013; Guderian
et al., 2009; Otten et al., 2006; Park & Rugg, 2010; Sweeney-Reed
et al., 2016; Urgolites et al., 2020). We approached this question
by examining how the SME changed after statistically controlling
for a comprehensive set of external factors. We also sought to
remove effects of item-specific external factors by aggregating
brain activity over the study periods of all items within a list to
predict list-level recall (i.e., a list-level SME). Both approaches for
removing the effects of external factors resulted in relatively
modest decreases to the SME, implicating endogenous factors as
the main drivers of the SME.

Because it is impossible to perfectly control for effects of all
possible external factors, distinguishing between effects of exter-
nal variables and endogenous processes is notoriously difficult.
We approached this challenge by treating serial position, list, and

session number as categorical predictors, effectively modeling the
joint effects of external factors associated with these predictors
without having to commit to a particular functional form relating
these predictors to recall performance. By fitting these models
separately to the data from each individual, we were also able to
accommodate individual differences. Our approach attributed any
variability in recall performance that covaried with one of our
external factors to that factor, even though it is likely that some of
that variability could reasonably be classified as “endogenous”
(e.g., sessions could be administered at different times from day to
day, and corresponding effects of circadian rhythms would have
been classified as an external session effect). Because of the fact
that our external factors likely represented the joint effects (in-
cluding interactions) of a large number of factors, we did not
explicitly model any interactions between the factors we consid-
ered. Such interactions would be difficult to interpret and we
would expect them to be small given that they would reflect
consistent relationships between somewhat arbitrary groups of
factors. Our approach to modeling external factors thus should
yield a conservative estimate of the contributions of endogenous
factors, despite the fact that we cannot completely rule out con-
tributions of external factors (and some corresponding interac-
tions) to our corrected SMEs.

Our findings of strong list-level SMEs, and their elimination
when synthesizing lists of randomly selected items within a ses-
sion, provide strong additional evidence against the interpretation
that the SME reflects item-level factors that influence memorabil-
ity. Specifically, the elimination of the list-level SME for shuffled
lists shows that the list-level SME is not simply an aggregation of
neural activity predicting recall success for individual items. Any
neural activity tied to the presentation of individual items and
predictive of encoding success would have survived our shuffling
procedure and thus should have resulted in a list-level SME even
for shuffled lists. Instead these findings suggest that relevant
endogenous factors vary at the time scale of multiple item presen-
tations. Averaging brain activity across encoding periods within a
list thus yields a signal that is strongly predictive of list-level recall
performance, because items that are studied together are studied in
similar “cognitive states.” These findings raise the questions about
the nature of the relevant endogenous factors producing these
states. The prominent negative correlation between recall perfor-
mance and o power (shown in Figures lc, 3b, and 4b) could
suggest that the endogenous factors that drive the SMEs reflect
attentional engagement during memory encoding (Sadaghiani &
Kleinschmidt, 2016). According to this interpretation, SMEs
would not specifically index mnemonic encoding processes and
should generalize to other tasks without memory tests. Further
work is required to establish the extent to which SMEs reflect
general attentional processes or specifically relate to successful
memory encoding. Within the multivariate approach introduced
here, this question could be addressed by contrasting decoding and
cross-decoding performance of multivariate models applied to
different tasks (Weidemann et al., 2019).

Because SMEs have been demonstrated in tasks other than free
recall, and for various measures of brain activity (Fernandez,
Brewer, Zhao, Glover, & Gabrieli, 1999; Hanslmayr & Staudigl,
2014; Otten, Henson, & Rugg, 2002; Schott et al., 2011), future
work will need to address the question of how endogenous neural
variation underlies memory encoding outside of our experimental
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setting. The fact that substantial SMEs remained after accounting
for a comprehensive set of external variables may appear in
conflict with findings that encoding task manipulations can affect
the specific form of SMEs, at least for recognition memory (Fell-
ner et al., 2013; Kamp, Bader, & Mecklinger, 2017; Otten & Rugg,
2001; Staudigl & Hanslmayr, 2013; Summerfield & Mangels,
2006). Here we show that in the absence of direct manipulations of
how study items are presented or processed, SMEs mainly reflect
endogenous factors with relatively modest contributions from ex-
ternal factors, at least for EEG activity in a free-recall task.

Our findings align with reports of sequential dependencies in
human performance (Gilden et al., 1995; Kahana et al., 2018;
Mueller & Weidemann, 2008; Verplanck et al., 1952) as well as
with those of slow endogenous neural fluctuations that drive
variability in evoked brain activity and overt behavior (Arieli et al.,
1996; Fox & Raichle, 2007; Fox et al., 2007, 2005; Monto et al.,
2008; Raichle, 2015; Schroeder & Lakatos, 2009). Previous inves-
tigations of endogenous variability in neural activity and perfor-
mance have relied on exact repetitions of stimuli across many
experimental trials to limit variability in external factors. To study
the effects of endogenous variability on recall performance, we
took a complementary approach by statistically removing the
effects of a comprehensive set of external factors. Despite the
differences in methodologies and tasks, the conclusions are re-
markably consistent in establishing an important role for slowly
varying fluctuations in neural activity as drivers of variability in
human cognition.

Because encoding and retrieval processes jointly determine
mnemonic success, it is notoriously difficult to study either process
in isolation. The assessment of encoding-related brain activity as a
function of subsequent memory performance offers a powerful
tool for isolating neural processes specifically underlying memory
formation. As typically used, however, this method conflates ex-
ternal factors that predict subsequent memory (e.g., item complex-
ity) and endogenously varying neural processes. Here we used two
new methods to deconfound these factors: First, we used a statis-
tical model to control for external factors and examined the SME
on residual performance measures. Second, we introduced a new
list-level SME and a session-level resampling control procedure
that identifies encoding-related neural activity that varies at the
time-scale of entire list presentations. Both approaches showed
that endogenous neural activity dominates the subsequent memory
effect, highlighting its effectiveness for the study of cognitive
processes associated with memory acquisition.
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