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Abstract
Objective. Although interest in using electroencephalogram (EEG) activity for subject
identification has grown in recent years, the state of the art still lacks a comprehensive
exploration of the discriminant information within it. This work aims to fill this gap, and in
particular, it focuses on the time-frequency representation of the EEG. Approach. We executed
qualitative and quantitative analyses of six publicly available data sets following a sequential
experimentation approach. This approach was divided in three blocks analysing the
configuration of the power spectrum density, the representation of the data and the properties of
the discriminant information. A total of ten experiments were applied. Main results. Results
show that EEG information below 40 Hz is unique enough to discriminate across subjects (a
maximum of 100 subjects were evaluated here), regardless of the recorded cognitive task or the
sensor location. Moreover, the discriminative power of rhythms follows a W-like shape between
1 and 40 Hz, with the central peak located at the posterior rhythm (around 10 Hz). This
information is maximized with segments of around 2 s, and it proved to be moderately constant
across montages and time. Significance. Therefore, we characterize how EEG activity differs
across individuals and detail the optimal conditions to detect subject-specific information. This
work helps to clarify the results of previous studies and to solve some unanswered questions.
Ultimately, it will serve as guide for the design of future biometric systems.
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Acronyms

ADJUST automatic EEG artifact detection based on the
joint use of spatial and temporal features

AEP auditory evoked potentials

ANN artificial neural network

ANOVA analysis of variance

AR auto-regressive

AvgMnt common global average reference montage

BCI brain–computer interface

BHFDR Benjamini–Hochberg false discovery rate

BIHMnt bipolar inter-hemispheric reference montage

CI confidence interval

CV cross-validation

CzMnt common Cz reference montage

EEG electroencephalogram

ERP event related potential

FFT fast Fourier transform
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FIR finite impulse response

IC independent component

ICA independent component analysis

MC Monte Carlo

PRE percentage reduction of error

PSD power spectrum density

REC resting with eyes closed

REO resting with eyes open

std standard deviation

STFT short time Fourier transform

VEP visual evoked potential

1. Introduction

The search of genetic traits within the EEG began with twin
studies by Davis and Davis [11] just 12 years after the first
human EEG recordings by Hans Berger [7, 10]. These initial
studies inspired follow-up work exploring individual char-
acteristics in artificially elicited brain responses as well as
similarities in EEG activity between family members,
including twins reared apart in a bid to isolate exogenous
factors [55]. The first direct connection between the mor-
phology of the EEG and the genotype of individuals was
made by Vogel [54]. Overall, certain EEG traits were con-
cluded to be highly inheritable, especially the alpha power
and the peak frequency over occipital regions [53, 55, 62].

These results laid the foundation for the first attempts at
automatic EEG-based biometric identification [44, 48]. The
field has progressed substantially since then.

Some recent works include the use of functionality
connectivity between brain regions [15], spectral coherence
[30], wavelet package decomposition [18], similarity-based
approaches [17] and features of the N400 [5]. A detailed
review of the state of the art can be found in [13]. This review
classified EEG identification/verification systems as follows:

• Resting states: systems based on resting states, either
resting with eyes open (REO), or, especially, resting with
eyes closed (REC) are particularly prominent owing to
the fact that the alpha rhythm (enhanced in posterior areas
when subjects have their eyes closed) has been shown to
be highly distinctive in physiological studies. These
systems rely mainly on spectral features such as the
coefficients of auto-regressive (AR) models, which are
then classified by artificial neural networks (ANNs)
[9, 28, 42, 43].

• Event related potential (ERP): attempts to use ERPs to
identify individuals have, to date, focused exclusively on
visual evoked potentials (VEPs). Although spectral
features are used in these systems [40], they mainly rely
on topographical characteristic of the VEP signal [45, 47].

• Multiple-tasks: studies using neural activity recorded
under different cognitive tasks tend to focus on

identifying the state which maximizes the performance
of a biometric system [38, 56].

• Indirect: this category encompasses systems that, although
based on EEG signals, do not rely on subject specific
characteristics, but on a brain–computer interface (BCI) to,
for example, allow the user to enter a PIN code [19, 39].

For further technical details about these and related stu-
dies, the reader is referred to [3, 13]. For the purpose of the
current study, it is enough to recall the main conclusion: the
identification of a lack of a comprehensive study of the
spectral discriminant information within the EEG activity. All
the biometric studies published to date focused their efforts
mainly on improving the accuracy rates through the appli-
cation of new algorithms. Meanwhile, the exact nature and
properties of the processed information (discriminant traits
within the EEG) has yet to be fully described from a biometric
point of view. Here we attempt to fill this gap with a series of
carefully designed experiments. In particular:

(1) we provide a description of the optimal conditions to
maximize the quality of the discriminant spectral
information;

(2) we present visual evidence of the existence of such
information and associated properties by means of a
stacked representation of the power spectrum den-
sity (PSD);

(3) we propose the use of spectral normalization methods
based on measurements robust against outliers, as a
booster of the quality of the discriminant data,

(4) we use six publicly available databases (ultimately
divided into eight data sets), which allows us to
distinguish general properties of the EEG signal from
idiosyncrasies in individual data sets; and

(5) the current study is the first attempt to use an auditory
evoked potentials (AEPs) database for subject
identification.

Before we describe the properties of the subject dis-
criminant information within the EEG spectral domain, we
will introduce the databases used for our analyses and the
associated preprocessing techniques. We will then elaborate
on our experimental approach detailing how latter tests were
informed by results of earlier experiments.

2. Materials

Previously published works have been mainly based on
analyses of isolated databases, in most cases not publicly
available [13]. Unfortunately, this hinders the interpretation
and reproduction of their findings. To overcome this, we used
a set of heterogeneous databases in an effort to identify
commonalities in the properties of the discriminant features.

2.1. Databases

We analysed data from six publicly available databases. The
first three; Keirn’s [22, 23], Yeom’s [57, 58] and Zhang’s
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[59–61] databases, have been extensively used within the
EEG biometrics literature and they were described in detail in
[13]. Additionally, we added three new-within-the-context
databases: BCI2000 [6, 16], DEAP [12, 25] and Ullsperger’s
[52] databases.

In some cases it was necessary to exclude data or to
reformat events. For example, we only included subjects
identified as healthy/normal to avoid classification perfor-
mance being driven by abnormalities. In addition, we rejected
subjects without a minimal number of trials for all tasks to
ensure reasonably balanced data sets. In other cases the ori-
ginal EEG events were divided into smaller ones, maximizing
the inter-segment time.

The BCI2000 consists of 109 subjects performing dif-
ferent motor/imagery tasks. A total of 64 EEG electrodes, as
per the international 10–10 system, were recorded with one of
the mastoid channels as reference. Recordings were taken
with a sampling rate of 160 Hz. Each subject performed 14
runs in a single session: two 1-min baseline runs (one REO
and one REC), and three 2min runs of four tasks (two motor
and two motor-imagery). We extracted two separated sets:
baseline and tasks.

The DEAP database (data set for emotion analysis using
EEG, physiological and video signals) was originally col-
lected to study emotional responses. A single session was
recorded from 32 subjects (50% males, aged between 19 and
37, mean age 26.9) while they visualized 40 60 s music
videos which elicited different emotions. Before each session,
2 min baseline activity was recorded with subjects relaxed.
EEG and peripheral physiological signals were collected by a
Biosemi ActiveTwo system with 32 scalp electrodes at a
sampling rate of 512 Hz. We extracted two separate sets:
baseline and playback. For the playback set, four conditions
corresponding to the quadrants of the arousal-score repre-
sentation of emotions were identified.

Keirn recorded EEG from seven subjects (six males and
one female between the ages of 21 and 48) while they were
either resting or performing one of four tasks for 10 s. Each
condition was repeated five times over the span of two weeks,
two sessions were recorded from each subject. EEG was
captured from six electrodes (occipital, parietal and central) at
a sampling frequency of 205 Hz.

Ullsperger recorded EEG activity in response to auditory
stimuli (words) which had to be classified as either matching or
not matching the meaning of a target word. The EEG was
recorded from five subjects who each were fitted with 61 elec-
trodes referenced to PCz and CP1 with a sampling rate of
200 Hz. A notch filter between 47 and 53Hz was applied to
remove line noise. From each trial, segments were extracted
from 2 s before presentation of the second (test) word to 2 s after.

Yeom recorded EEG activity from 11 male subjects
including one pair of monozygotic twins, with ages between
20 and 29 years old (mean 26.67), while they viewed pictures
of either themselves or others. All but one participated in two
sessions on different days (we used only data from the ten
subjects participating in both sessions for our analyses). A
Neuroscan SynAmps2 system was used to record the EEG
signal from 18 electrodes (International 1020 System). The

sampling rate was set to 300 Hz and a band-pass filtered
between 0.1 and 100 Hz. Additionally a 60 Hz notch filter
was applied. EEG was extracted from 200 ms pre- to 800 ms
post-stimulus.

Zhang’s recorded EEG activity from 125 subjects per-
forming a visual matching task. We only used data from the
subset of 48 healthy males 25.81± 3.38 years old (the
remaining 77 subjects were diagnosed with alcoholism).
Forty trials were recorded from each subject with an inter-
trial-interval of 3.2 s. EEG activity was recorded from 61
channels referred to Cz. The sampling rate was 256 Hz and
data were hardware filtered between 0.02 and 50 Hz.

2.2. Preprocessing

We applied a common normalization and preprocessing
step to all databases to remove idiosyncrasies that are specific
to the particular recording set-up, such as sampling frequency
or recording reference (figure 1). This pre-processing proce-
dure, including the applied thresholds, is mainly based
on [36].

All databases were filtered using a high-pass finite
impulse response (FIR) filter with a low edge frequency of
1 Hz. For data sets that were not already filtered at 50 or
60 Hz to reduce line noise, we applied a FIR notch filter at
either 50 Hz (DEAP) or 60 Hz (BCI2000, Keirn’s database)
as appropriate. Additionally, we low-pass filtered EEG
activity from Zhang’s database at 40 Hz to homogenize
channels.

Next, extremely noisy EEG channels were automatically
detected and rejected to avoid any interference in subsequent

Figure 1. The preprocessing and normalization steps applied to all
databases, with ADJUST referring to the automatic artefact rejection
system presented in [33] and Fs referring to the EEG sampling
frequency.
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computations. In particular, the time kurtosis

K X c Crn kurt 3 for 1, 2, , , 1c c( )( ) ( )= - = ¼

where Xc is the EEG of the cth channel, was used as a noise
indicator feature, together with the weighted correlation
between channels

R j c i Crn median , for 1, 2, , 2c c( )( ) ( )= F " ¹ = ¼

X X j cand 1 corr , e , , 3c ci cj
dci cj,{ }( ) ( )F = - " ¹-

where dci cj, is the arc distance between channels ci and cj in a
sphere of radius one. In both cases, rn is the robust
normalization function

v
v v

v
rn

20 median

27 iqr
, 4( ) ( ( ))

· ( )
( )=

-

where v is a feature vector and median and iqr are the median
and interquartile functions respectively. Note that

v27 20 iqr n n( ) · ( ) q for a normal distribution vn with
standard deviation (std) nq .

We considered channels for which either of the features
exceeded three for rejection. If the proportion of such channels
fell below 10%, they were excluded, otherwise we rejected the

10% of the channels with the largest scores K Rc c
2 2+ .

EEG voltage ranges were then normalized by
equation (4). This was preferred over the z-score normal-
ization due to the level of artefacts in some of the databases.

When the number of available trials allowed it, the noi-
siest were discarded. Again, the criterion applied to define the
number of maintained trials relied on the desire to have a
balanced database across subjects, conditions and sessions.

Hence, noise in events was characterized by the voltage
range

A rn p X p X e Efor 1, 2, ,

5

e T e T e
C

95 5( )( ) ( )
( )

( )
( )

( )
( )

( )
= - = ¼

and the voltage variance

V rn T X e Evar for 1, 2, , , 6e e C( )( )( ) ( )
( )

= = ¼

where Xe is the EEG of the eth event, p T
n

( )
( ) and var T ( · )( ) are

the n% percentile and variance across time (T) and C· ( )á ñ
represents the average across channels. Events were then sorted

based on their score A Ve e
2 2+ and those with the highest

values were rejected until the desired amount was reached.
Once artefactual events had been removed, rejected

channels were interpolated back in the data set. A spherical
interpolation method was applied for this purpose.

When the number of subjects available allowed it, those
with the worst signal quality were discarded. The rejection
was based on the score

A V
C

C2
30

1
, 7E

2 2
ˆ

( )( )
+

+
+

where A and V are the features defined in (5) and (6) and
E· ( )á ñ is the average along the events dimension.

Finally, in order to reduce the volume of data, only a set
of 16 channels distributed around the scalp were kept
(figure 2), except for Keirn’s and Yeom’s databases, from
which all available channels were kept. In addition, databases
were down-sampled to 128 Hz.

A second version of databases with more than 20 chan-
nels (i.e. all but Keirn’s and Yeom’s) was computed by
applying the automatic EEG artifact detection based on the
joint use of spatial and temporal features (ADJUST) algo-
rithm [33] between the stages of event rejection and channel
interpolation. This tool automatically identifies artefactual
independent components from time and topological features
by means of an unsupervised classification method. In parti-
cular, a slightly modified version of the algorithm was used,
which accounted for missing features by simply ignoring
them from the computation. This artefact-free version was
used to assess the effect of noise on the discriminant infor-
mation. Note, however, that automatic artefact rejection
methods are still a hot topic of research. Results obtained with
the ADJUST processed data sets should therefore be inter-
preted accordingly (see appendix A for a short discussion on
the effects of ADJUST on the classification results).

2.3. Diversity of databases

Table 1 summarizes the properties of the extracted databases.
A total of eight data sets, originated from six different pub-
licly available databases, were used in the forthcoming
experiments. Having said so, their diversity is as important as
their number. In particular,

Figure 2. Diagram of the 10–20 international system for EEG
channel locations. Highlighted channels are kept for
experimentation.
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Table 1.Normalized databases used for experimentation. Columns show the name of the database (Database), the number of subjects (Subj.),
the number of conditions (Cond.), the number of sessions (Sess.), the number of trials (Trials), the length of the EEG segments in seconds
(Len.) and the descriptive keywords (Keywords).

Database Subj. Cond. Sess. Trials Len. Keywords

BCI2000-Baseline 100 2 1 5 10 REO; REC

BCI2000-Tasks 100 12 1 [9, 10] 4 Multiple-tasks; motor real/imagery

DEAP-Baseline 20 1 1 5 20 REO

DEAP-Playback 20 4 1 [5, 10] 20 Elicited emotions

Keirn’s 5 5 2 [8, 10] 4 Multiple-tasks; intellectual

Ullsperger’s 5 2 1 180 4.1 Auditory evoked potentials (AEP); synonyms versus non-synonyms

Yeom’s 10 2 2 900 1 VEP; self-representation

Zhang’s 30 3 1 [15, 20] 1 VEP

Figure 3. Diagram of the experimentation methodology. (1) We identified the configuration of the PSD that maximizes the discriminant
information. (2) We find the representation of the time and frequency domains that maximizes the discriminant information. (3) We
characterized the properties of the EEG discriminant information. This figure complements the information presented in table 2.
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(1) BCI2000-Baseline and DEAP-Baseline databases repre-
sent resting conditions,

(2) BCI2000-Tasks accounts for real and imagery motor
conditions,

(3) Keirn’s data set provides multiple intellectual tasks,
(4) DEAP-Playback assesses the effects of emotions,
(5) Yeom’s and Zhang’s databases contain two extensively

studied visual evoked potentials (VEPs), and
(6) Ullsperger’s data introduces the use of AEP.

As a result, findings that are consistent across data sets
can be safely generalized as inherent characteristics of the
EEG signal and not due to idiosyncrasies of the set-up.

3. Methodology

The experimentation process was divided into three blocks,
each composed of several tests focussed on a common goal
(figure 3 and table 2). Configuration details missing in this
section will be given within the corresponding results section,
as their rationale depends on the results of previously eval-
uated steps. Complementary qualitative and quantitative stu-
dies were carried out during each experiment. In both cases, a
short time Fourier transform (STFT) spectrogram, computed
with a Hamming window, was used to extract the time-fre-
quency representation of the EEG signal. All the experiments
were ran on the preprocessed databases listed in table 1. From
each data set, except Keirn’s and Yeom’s, two versions were
evaluated: one containing the raw (preprocessed) EEG, and a

second one containing the artefact free EEG after applying
ADJUST (section 2.2).

It is imperative to keep in mind that, contrary to the state
of the art, the current study at no point aimed to obtain high
accuracy rates during classification. Instead, it intended to
describe in some detail the subject discriminant information
within the time–frequency representation of EEG activity, and
to characterize the effects of each of the parameters in the
classification problem. Indeed, some of the decisions taken on
the design and analysis of experiments are founded on this
characteristic goal.

3.1. Configuration of the PSD

During the first experimentation stage, we defined the con-
figuration of the STFT that maximizes the discriminant
information. Specifically, we explored the number of fast
Fourier transform (FFT) coefficients (NF), the window length
or spectral width (LW), the window overlap percentage (Θ),
the EEG segment length (LG) and the frequency range (FR).
With this aim, we ran the following experiments:

(1) Spectrogram width and number of spectral coefficients:
Hamming window lengths L 0.1, 60W [ ]Î seconds and
the number of FFT spectral coefficients NF Î 32, 1024[ ]
were evaluated on a grid-like set of experiments where
the window overlap Θ was fixed to 0.

(2) Window overlap: overlap percentage values
0, 25, 50 and 75Q = were tested on the best perform-

ing configurations (LW and NF) of the previous step.

Table 2. Phases of the experimentation methodology. This table complements the information presented in figure 3.

1. Configuration of the PSD

Spectrogram width and number of spectral
coefficients

Analysis of number of spectral coefficients (NF), spectrogram window length (LW) and
EEG length (LG)

Window overlap Analysis of spectrogram window overlap (Θ)

Frequency range Analysis of maximum (Fmax) and minimum (Fmin) cut-off frequencies

Review of spectrogram width with optimal
parameters

Analysis of spectrogram window length (LW), with specific number of coefficients (NF),
window overlap (Θ) and EEG length (LG)

Review of EEG length with optimal
parameters

Analysis of the EEG length (LG), with specific number of coefficients (NF), spectrogram
width (LW) and window overlap (Θ)

2. Representation of the time and frequency domains

EEG montages Analysis of multiple EEG montages

Spectral normalization Analysis of different normalization methods

3. Properties of the discriminant information

Spatial distribution Analysis of the spatial distribution of the EEG discriminant information

Frequency distribution Analysis of the frequency distribution of the EEG discriminant information

Uniqueness Analysis of the EEG discrimination power with increasing number of subjects

Permanence Analysis of time stability of the EEG discrimination information
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(3) Frequency range: the width of the spectral band used
was modified by varying the maximum Fmax and
minimum Fmin frequencies between 10 and 60 Hz on
individual experiments.

(4) Review of the spectrogram width with optimal para-
meters: to clarify the effects of the STFT window length
on the system’s performance, optimal configurations
were represented against LW. That is, L 0.1, 60W [ ]Î
was tested with the remaining parameters (NF, LG and
Θ) set based on conclusions from previous experiments.

(5) Review of the EEG length with optimal parameters: to
clarify the effects of the EEG length on the system’s
performance, optimal configurations were represented
against LG. That is, L L L,G W[ ]Î , with L the available
length of signal, was tested with the remaining
parameters (NF, LW and Θ) set based on conclusions
from previous experiments.

3.2. Representation of the time and frequency domains

Once the STFT was fully configured, we evaluated different
time and frequency representations of the data. In particular,
we ran the following experiments:

(1) Montages: transformations of the signal in the time
domain were assessed by EEG montages common
global average reference montage (AvgMnt), bipolar
inter-hemispheric reference montage (BIHMnt) and
common cz reference montage (CzMnt).

(2) Spectral normalization: in a bid to find the optimal
representation of the spectral information for the
problem, the normalization functions described in
table 3 were applied to the PSD prior to the
classification.

3.3. Properties of the discriminant information

This experimentation block ran a number of tests to describe
some of the properties of the discriminant PSD information.
In particular:

(1) Spatial distribution: each EEG channel was evaluated
individually to assess the performance of neural activity
from different sensor locations (which vary in sensitiv-
ity to activity from different brain areas).

(2) Frequency distribution: each frequency was evaluated
individually to asses the performance of different EEG
rhythms.

(3) Uniqueness of patterns: to evaluate the uniqueness of
individual spectral patterns, experiments varying the
number of users NS in the system were run, so that the
stability of the performance with increased NS could be
assessed.

(4) Permanence of patterns: this step aimed to judge the
independence of the subject characteristic patterns with
respect to time. To do so, Keirn’s and Yeom’s data sets
were cross-validated considering each recording session
as an indivisible unit. That is, for each subject, training
and testing sets contained samples from different
sessions. For simplicity, this cross-validation (CV)
methodology will be referred to as session-CV.

3.4. Qualitative study

To simplify inspection of the EEG PSD, the spectrograms
from selected trials, sessions, conditions and channels were
stacked along their time axis, resulting in a single, piecewise-
continuous (in time) spectrogram (figure 4). This representa-
tion of the data helped to visually confirm the existence of
different spectral neural signatures across individuals. It also
helped to understand the effects that the evaluated parameters
have on this signature. Hence, we performed these qualitative
analyses on all experiments, to complement quantitative tests.

3.5. Quantitative study

To quantify the observations made during visual inspection of
the spectrogram, we performed a series of classification
experiments. Because the aim of such experiments was not to
obtain high accuracy rates, we applied a simple design based
on a Bayes classifier.

To this end, we z-normalized PSD coefficients across
samples and used them as input to the classifier. The nor-
malizing factors were computed only with the training set,
and uninteresting filtered frequencies were removed from the
analysis.

Different final responses of the Bayes classifier were
computed from the sum-score fusion of NG neighbouring
windows, with N N1, 2, ,G W= ¼ , where NW is the number
of windows extracted from a single trial. Hence, for each NG

value, a total of N N 1W G- + responses where computed by
shifting the fusing scope a single PSD window to the right
each time. This process was done to differentiate between the
effects of the length of the Hamming window LW and the
length of the EEG segment

L L N N1
100

, 8G W G G( ) ( )= - -
Q⎡

⎣⎢
⎤
⎦⎥

with Θ the window overlap percentage, used to compute a
response. When representing results against LG, intermediate
values (not multiples of LW) were interpolated whenever
possible for ease of interpretation.

Table 3. PSD normalization functions. P is a PSD matrix with
dimensions NFxNT, with NT the number of time points, and p n

F
%

( ) is

the n-% percentile applied along the frequency dimension.

Name Equation Name Equation

powNorm
P

Pfå" prcNorm
P p P

p P p P

F
5%

F
95%

F
5%

( )

( ) ( )
( )

( ) ( )

-

-

normNorm P

Pf
2å"

iqrNorm P p P

p P p P

F
25%

F
75%

F
25%

( )

( ) ( )
( )

( ) ( )

-

-

zNorm P P

Pstd
F

F ( )
( )

( )

- á ñ rNorm P P

P

median

iqr
F

F

( )
( )

( )

( )

-
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In addition, four fusion modes were differentiated based
on the level of feature fusion (table 4):

• Full-fusion: coefficients from all frequencies and channels
are fused into a single vector.

• Freq-fusion: coefficients from all frequencies are fused
into a single vector and each channel is evaluated
individually.

• Ch-fusion: coefficients from all channels are fused
into a single vector, and each frequency is evaluated
individually.

• No-fusion: the coefficient from each channel and
frequency is evaluated individually.

For CV, we combined stratified K-folds and Monte Carlo
(MC) techniques in order to benefit from the stability (lack of
bias) of the former and the low-variance of the latter [26]. To
this end, we repeated a K-fold process with five folds ten
times.

For databases where the number of available subjects
exceeded the number used for experimentation (NS), we used

a different subset of subjects on each of the MC repetitions.
Such subsets were built in a balanced way, i.e. by trying to
use each subject the same number of times across the whole
experimentation process. Unless otherwise specified, we used
a maximum of NS = 20 subjects as a compromise between the
number of subjects and the number of available databases
able to accommodate NS. The latter was important to avoid
any unexpected interaction between the tested factor and NS.

In addition, to ensure the validity of the results, during
the segmentation of the databases all windows extracted from
the same trial were kept in the same fold. This prevented the
inclusion of EEG segments on both training and testing sets
when the window overlap parameter was greater than 0%.

Micro-accuracies were computed for each of the MC
repetitions as follows. Let M i j,( ) be the NS × NS confusion
matrix of the jth K-fold iteration of the ith MC repetition, so
that M Mi j i j,( )å= "

is the aggregated confusion matrix for

the ith MC repetition. Let Ai be the corresponding mean
accuracy rate. We converted accuracy rates to percentage
reduction of error (PRE) values for the evaluation of the

Figure 4. PSD with different STFT window length (LW) and number of FFT coefficients (NF). The PSD, in dB scale, corresponds to one of
the subjects of BCI2000-Baseline database. Within each PSD, the missing frequency band around 50 Hz (vertical axis) was filtered in the pre-
processing and manually removed from the analysis. The horizontal axis (time) is piecewise-continuous and contains all the samples from the
subject.

Table 4. Fusion modes used during experimentation.

Mode Description

No-fusion The system is evaluated using a single PSD coefficient, individually for each EEG channel.

Freq-fusion The system is evaluated using all PSD coefficients simultaneously (from the selected frequency range), but individually for
each EEG channel.

Ch-fusion The system is evaluated using a single PSD coefficient, but combining all EEG channels.

Full-fusion The system is evaluated using all PSD coefficients (from the selected frequency range) from all EEG channels
simultaneously.
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results [21]. Specifically, we compared Ai with a random
process, such that

A
N

N

PRE

1

1
1

. 9i

i
S

S

( )=
-

-

The mean ( PREm ) and 95% confidence interval (CI) of the
above PRE values were then computed and reported. To
avoid cluttering the text with figures and tables, we only
inserted the most representative examples in each case.
Supplementary results and statistical tests can be found in
appendix C of the supplementary data (stacks.iop.org/jne/
12/056019/mmedia).

We use PREs instead of the more common absolute
accuracy values for practical reasons. First, we aimed to shed
light on the properties of the discriminant information within
the EEG data, relegating absolute performance to a secondary
role (as long as it is above chance level). This is especially true
given that results were analysed by comparison rather than
inspecting isolated values. Second, PREs as measured here will
be 0 if the system performs at chance levels and 0> otherwise,
regardless of the number of subjects included in the analysis. In
other words, the range of values of the results have a common
meaning across databases. This allows for a better representa-
tion and more direct interpretation and comparison of the
results. Having said that, if required, performance values can be
easily extracted from the given PREs by inverting equation (9)
(see appendix B in the supplementary data (stacks.iop.org/jne/
12/056019/mmedia) for step-by-step examples).

Finally, we differentiated between the following four
experimental modes based on the level of focus (table 5):

• Detailed-focus: experiments were run individually for
each combination of session and task.

• Task-focus: experiments were run individually for each
task, ignoring session labels during the CV partitioning.
Mixing sessions on training and testing sets is not the
standard procedure from a biometric point of view.
However, in the current scenario, there are random factors
linked with the set-up process, such as the exact position
of sensors or their contact quality, which affect the
recorded EEG. One way to alleviate the influence of such
factors is to average across sessions. Note that we also
executed experiments cross-validating sessions to keep
the study relevant within the biometric field (section 3.3).

• Sess-focus: experiments were run individually for each
session, ignoring task labels during the CV partitioning.

• No-focus: experiments were run over all the available
data, ignoring task and session labels during the CV
partitioning.

4. Configuration of the PSD: results, discussion and
conclusions

Within the first study block, we analysed the effects of some
basic parameters on the quality of the extracted EEG dis-
criminant information. Specifically, we considered the num-
ber of FFT coefficients (NF), the length of the spectral
window (LW) and its overlap (Θ), and the length of the EEG
signal used to compute the final identification response (LG).
We executed full-fusion experiments with all focus modes
(see tables 4 and 5).

4.1. Spectrogram width and number of FFT coefficients

First, we ran a number of experiments varying the number of
FFT coefficients (NF), the length of the spectral window (LW)
and the length of the EEG signal used to compute the final
identification response (LG) (Θ was set to 0%). As we sus-
pected a triple interaction between these parameters, we
executed all possible combinations in a cube like methodol-
ogy with the following ranges N 16, 2048F [ ]= ,
L L0.1, max 20,W A[ ( )]= and L L L,G W A[ ]= ; with LA the
length of the available signal.

Results. Overall, a common behaviour was observed across
databases. Visually, the PSD became more stable with longer
windows (above 1 s). At the same time, some EEG traits and
details are not apparent until NF is higher than 64 (figure 4). In
quantitative terms, representing the PREm surface of LW
against NF corroborated the qualitative observations (figures 5
and C.1). Overall, the system reached quasi-optimal
performance at the diagonal N L FWF s*» , with Fs the
sampling frequency (table ).

Although less prominent and less homogeneous across
databases, an increase in LGwas generally followed by a gain in

PREm values (figures 5 and C.2). In some instances, such as
DEAP and Keirn’s databases, this leap was as high as 10
percentage points. This could be expected, as increasing LG
means more information being fed to the system to produce the

Table 5. Focus modes used during experimentation.

Mode Description

Detailed-focus The system is evaluated using data from a single cognitive task/condition and a single recorded session.

Task-focus The system is evaluated using data from a single cognitive task/condition but all recorded sessions.

Sess-focus The system is evaluated using data from all cognitive tasks/conditions but a single recorded session.

No-focus The system is evaluated using data from all cognitive tasks/conditions and all recorded sessions.
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final response. Overall, we found the performance peak at
L LW G< , i.e. when the available signal was divided into
individually processed segments instead of in a unique long
chunk. The only exceptions to this were DEAP-Playback
results of only no-focus experiments, and Yeom’s and Zhang’s
databases. In the latter pair, the effectmight still be there, butwe
are unable to see it due to the limited EEG available (only 1 s).

In terms of the stability of the results, databases with
fewer than 20 subjects (i.e., all subjects were used in each

iteration of MC) showed, as expected, lower levels of PREq .
The interaction between the std and the parameters considered
here were not that clear. In general, minimum values of PREq
were located within the optimal area, i.e. above the NF-LW
diagonal, while LG had little or no effect in this regard.

When comparing results from each of the experimenta-
tion modes, the use of multiple tasks or sessions had no effect
other than the expected averaging of PREm and the increase of

PREq . The application of ADJUST for artefact rejection
increased the amount of discriminant information, which was
reflected in both mean and std PRE values.

Discussion. In terms of the parameters NF and LW, the optimal
diagonal N L FWF s*» suggests that it is desirable to retain the
maximum frequency resolution. This conflicts with architectures
such as [43, 44], which focused on the power of relatively wide
spectral bands. At the same time, the relationship between
performance and frequency resolution is in line with the findings
of [42] regarding the need for higher orders of the AR model;
and hence better frequency resolutions, to counteract the rise in
the number of users. According to this, wide spectral bands
should only be used on neurophysiological studies—where brain
rhythms are well described—or as supplementary features into a
more complex feature vector.

With no obvious relationship between LG and the
system’s performance, a ‘maximum’ approach could be
recommended, i.e. use as much EEG data that is available.
Perhaps, the most interesting effect of LG is its ability to dilate
the ‘optimal configuration area’, i.e. the set of parameters that
yield results similar to the observed best performance. It is
this property which allows to reduce LW and subsequently NF,
maintaining the level of discrimination. A more detailed study
of LW and LG will be presented in sections 4.4 and 4.5.

4.2. Window overlap

Subsequently, the overlap percentage parameter Θ was opti-
mized by testing configurations of Θ, LW and NF, which
accounted for the interaction between these three parameters.
In this case, based on the previous experiment, the range of
NF was shrunk to [64, 256] in a bid to reduce the volume of
experimentation.

Results. Results were less uniform across data sets and
system’s configurations than in the previous experiment. In
general, higher values of overlap yielded similar or better
results (figures 6 and C.3). The most obvious effect of Θ was
its ability to widen the optimal configuration area (as
described with LG). The effects of Θ remained relatively
stable across experiments (detailed-focus, task-focus,
sess-focus and no-focus) and after the application of the
artefact rejection methods. The most prominent exception
was, once again, obtained with the DEAP-Playback data set
during no-focus experiments—the behaviour just explained
was observed in task-focus experiments.

Discussion. A priori, it seems reasonable to use some degree
of window overlap, as higher Θ translates into more

Table 6. Quantitative results for different configurations. Mean PRE
and 95% CI obtained with different configurations. Data correspond
to raw databases tested during full-fusion no-focus experiments.
Within data sets, performances statistically different than the
maximum are pointed by * (single tail t-tests with BHFDR adjusted
p 0.05> ). A maximum of 20 subjects was used in each
experimental iteration. Refer to table 1 for details on databases’ code
names, and to table 13 for further related results.

Conf BB BT DB DP

Conf-FullLen 68.79* 88.88 64.11* 95.82
[64.52,
73.06]

[87.67,
90.10]

[62.58,
65.63]

[95.61,
96.04]

Conf-1s 92.74 87.80 92.63* 81.99*
[89.85,
95.62]

[85.43,
90.17]

[91.69,
93.57]

[81.70,
82.27]

Conf-2s 93.16 89.32 93.68 88.51*
[91.60,
94.72]

[87.25,
91.40]

[93.33,
94.04]

[88.26,
88.75]

Conf K P Y Z

Conf-HalfLen — — 52.89* 78.82
— — [52.86,

52.92]
[75.26,
82.37]

Conf-FullLen 74.42 94.22 57.47 77.88
[73.68,
75.17]

[94.15,
94.30]

[57.45,
57.50]

[76.05,
79.71]

Conf-1s 73.74* 92.83* — —

[73.57,
73.92]

[92.71,
92.94]

— —

Conf-2s 74.70 93.72* — —

[73.81,
75.59]

[93.61,
93.84]

— —

Figure 5. Quantitative analysis of the number of spectral coefficients
(NF), the SFTF window length (LW) and the length of the EEG signal
(LG). Mean PRE results obtained with DEAP-Baseline database on an
LW versus NF grid with LG= 10 s (left) and an LG versus LW grid with
NF= 128 coefficients (right). In both cases,Θwas fixed to 0% and the
results were obtained during the full-fusion no-focus experiments. A
maximum of 20 subjects was used in each experimental iteration.
Refer to figures C.1 and C.2 for further related results.
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information being fed to the system to produce the final
response—similar to LG. However, although results supported
this to some degree, the observed effects are not strong
enough to make a final statement in this regard. With this in
mind, we decided to use an overlap of 75% in subsequent
experiments. This is, however, a somehow arbitrary decision,
as we have no strong evidence that this overlap value works
better than any other. Therefore, lower overlaps could be used
if, for example, processing time or data volume are a concern
in the design of the system.

4.3. Frequency range

The visual inspection of EEG PSD undertaken on previous
steps suggests that spectral neural signatures stabilize for
frequencies above 30–40 Hz (figure 4). To explore this further
we systematically limited the maximum Fmax and minimum
Fmin frequencies in separate experiments. Once more, to
reduce the volume of experimentation, only two configura-
tions were tested, named Conf-HalfLen and Conf-FullLen.
The latter uses LW equal to the available EEG signal and
hence 0Q = , while Conf-HalfLen utilizes LW equal to half
the available signal and 75Q = . In both cases, NF was set to
the power of two closest from the right to L FW s* .

Results. As expected from the observation of the PSD
representation, the system reached maximum performance at
Fmax equal 30 or 40Hz in all databases with the exception of
Yeom’s data set, which reaches it at 50 Hz (figure 7 left). On
DEAP databases, there was a decrease of less than 10
percentage points in PRE when raising Fmax from 30 to
40Hz (tables C.2 and C.3). Experiments varying Fmin resulted
in a PREm curve with two more pronounced increases, one
when the first frequencies are added (between 50 and 60Hz)
and the second one with the last frequencies—frequencies
below 20 or 30Hz (figure 7 right and tables C.2 and C.3). This
behaviour was also observed after rejecting artefacts with
ADJUST (figure C.4 and table C.4).

Discussion. In line with [9], a high frequency cut-off of 30
or 40 Hz can be established based on the results. Indeed, most
of the systems in the literature have used a maximum

frequency below 40 Hz [13]. The described results highlight
that architectures using only high frequencies [41, 46] are not
necessarily the optimal approach.

The outlier behaviour in Yeom’s database may be a result
of the classifier capitalizing on differences between users’
artefacts—muscle artefacts have been identified to overlap
with frequencies above 20 Hz [35]. A post-hoc examination
of the spectra from Yeom’s database corroborated the
existence of noise at high frequencies.

Indeed, EEG artefacts have been shown to be subject
discriminant and used successfully for identification [4].
Hence, the performance of systems using frequencies above
20 Hz cannot be considered to be solely based on the users’
neural signature without a proper artefact analysis. In our
case, the exact same behaviour was obtained with artefact free
databases, as processed by ADJUST. In fact, techniques
based on independent component analysis have been
described as the ‘more promising approaches that have been
used for attenuating muscle artefact’ [35]. Hence, although it
is not possible at the moment to be certain about the source of
the performance above 20 Hz, it seems unlikely that it comes
from muscle artefacts. Unfortunately, due to an insufficient
number of EEG sensors, we lacked an artefact free version of
Yeom’s database (which we noted had high frequency
artefacts) to further test this.

4.4. Review of spectrogram width with optimal parameters

Although previous experiments have shed light onto the
optimal value of the spectral window length (LW), they did
not address the issue in a definitive way due to the relation-
ship between LW and the other parameters. To circumvent
this, we re-tested a range of window lengths, setting the
remaining parameters to their defined optimal values. That is,
NF was set to the maximum power of two closest to L FW s* , LG
was set to the available signal length, Θ was set to 75%
whenever possible (i.e. when LW is small enough to allow
multiple windows with 75% overlap on the available signal
length) and 0% otherwise, and Fmax was set to 40 Hz. Results
obtained with Yeom’s and Zhang’s will be presented but not
considered in the analysis, as they only contain 1 s of EEG.

Results. Across databases, maximum performance was
reached at LW between 1 and 2 s (figure 8 and table C.6).
After this point, performances either stabilised within the 95%
CI or decreased. The main exception encountered was on
DEAP-Playback data set, for which the maximum was
reached between 6 and 8 s.

The rejection of artefacts reduced the differences between
window lengths below 2 s, boosting the performance of the
shortest windows. On DEAP-Playback data set, cleaning the
EEG shifted the optimal point to earlier in LW, reaching it
between 4 and 6 s on ADJUST processed data.

Discussion. Similar behaviour was observed across
databases. Overall, we obtained optimal performances with
window lengths 1 or 2 s, with the exception of DEAP-
Playback. In addition, the flattening observed on the

Figure 6. Quantitative analysis of the SFTF window overlap (Θ).
Mean PRE results on a LW versus Θ grid with NF = 128 and LG
equal to the maximum EEG available. Results correspond to
BCI2000-Tasks (left) and Keirn’s (right) data sets, during full-fusion
no-focus experiments. A maximum of 20 subjects was used in each
experimental iteration. Refer to figure C.3 for further related results.
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performance curves for windows sorter than 2 s suggests that
these configurations are more sensitive to noise.

4.5. Review of EEG segment length with optimal parameters

A review similar to the previous was run for the length of the
EEG signal used to compute the final response (LG). We
defined here configurations Conf-1s and Conf-2s. These had

75%Q = and a LW of 1 and 2 s respectively, with NF and LG
set to their optimal values (section 4.7). Note that, since the
duration of events in Yeom’s and Zhang’s databases was 1 s,
only Conf-HalfLen and Conf-FullLen were possible (a 75%
overlap as used in Conf-1s in not achievable in this case).
Additionally, in BCI2000-Tasks and Keirn’s databases, con-
figurations Conf-HalfLen and Conf-2s are equivalent.

Results. In this case, results are remarkably similar across
databases, with PRE curves showing an asymptotic behaviour
with increasing LG (figures 9 and C.5). On databases with
EEG signals too sort to show the asymptote itself, the PRE

curves still behave in a way similar to databases with longer
signals, clearly suggesting the presence of such a limit.
Overall, the maximum performance is obtained using all the
available EEG.

To study the described behaviour, we fitted the rational
model

a bL

c dL
PRE , 10G

G
( )=

+
+

with a–d fitted factors, and used LW = 60 s as the maximum
PRE point. Such model can be seen to accommodate well the
dynamics of the data. Exceptions were found on the curves of
Ullsperger’s database after rejection of artefacts, and on
DEAP-Baseline with Conf-HalfLen system after the applica-
tion of ADJUST (figure C.5). For all data sets (raw and
artefact free) and all systems, we found that [92.5%–95%] of
the maximum performance (asymptote) was obtained at LG
between 4 and 6 s.

Figure 7. Quantitative analysis of the maximum (Fmax) and minimum (Fmin) cut-off frequencies. Mean and 95% CI of PRE results obtained
in full-fusion no-focus experiments with different Fmax (left) and Fmin (right) values, corresponding to Conf-HalfLen system. A maximum of
20 subjects was used in each experimental iteration. Refer to figure C.4 for further related results.

Figure 8. Quantitative analysis of the STFT window length (LW). Mean PRE and 95% CI (shaded area) obtained with different LW. The
remaining parameters were set to their optimal values according to previous experiments. Data correspond to full-fusion set-up in no-focus
experiments with raw databases (left) and after the application of ADJUST processing (right). A maximum of 20 subjects was used in each
experimental iteration. Refer to figure 7 for details on the legend.
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Discussion. An increase in performance with longer EEG
recordings is to be expected, as this translates in more
information being fed into the system. Once the system has
enough information to overcome the distortion of noisy
segments, the performance levels out. This asymptotic
behaviour has been studied here by means of a first-degree/
first-degree rational model. For the shorter databases (less
than 4 s), the amount of data available to fit the model was
relatively small, and results should be considered accordingly.
Having said that, the homogeneity across all (sort and long)
data sets is obvious from the represented curves, which
suggest that, although more experimentation is needed to
make a final statement, the described behaviour may be
a good approximation of the true interaction between
performance and LG.

4.6. A comparison across systems

To finalize the analysis of the results obtained in all the
previous experiments, we compare here the performance of
the systems defined in sections 4.3 and 4.5, i.e. Conf-HalfLen,
Conf-FullLen, Conf-1s and Conf-2s (tables 6 and C.7).
Overall, the fragmentation of the EEG signal into shorter
overlapping windows (between 1 and 2 s) outperformed the
use of all the EEG signal at once. DEAP-Playback data set
was the main exception, but only in no-focus experiments.
Raw processed Ullsperger’s database also performed better
with Conf-FullLen, but by less than 1 percentage point.
Yeom’s and Zhang’s databases should be considered aside, as
they only allow configurations Conf-HalfLen and Conf-Full-
Len due to the limited amount of EEG signal available (1 s).

Such behaviour may be explained by the way Conf-1s and
Conf-2s process the data. By breaking the available data into
segments, we isolate localized noise into individual segments,
or more precisely, into a set of them as we allow 75% overlap
between windows. At the same time, segments with good
quality signal are also obtained. While noisy segments may
yield random outputs from the system, clean segments will
presumably result in accurate responses with high confidences

(scores). When averaging outputs across segments, we expec-
ted the response from clean segments to be selected.

4.7. Conclusions

Throughout these experiments, we have defined the optimal
configuration of the STFT to maximize subject-discriminant
information. In particular, the fragmentation of the EEG
signal into shorter overlapping windows (between 1 and 2 s)
has been identified as the best overall approach. The spectral
domain of each segment should then be computed without
compromising in frequency resolution (N L FWF s*» ), while
also keeping in mind that discriminative information was
found primarily under 40 Hz.

With regard to the amount of EEG needed, it is a
matter of maximizing the information fed to the system.
Having said that, from our analysis we conclude that
L 4, 6G [ ]= s results in performances between 92.5% and
95% of the maximum achievable by the data. However, we
can expect this to vary depending on the quality of
the data.

5. Representation of the time and frequency
domains: results, discussion and conclusions

Once the optimal configuration of NF, LW, Θ and LG was
found, we assessed the effects of different time and frequency
representations. We compared the discriminant information of
AvgMnt, BIHMnt and CzMnt montages, as well as the effects
of several PSD normalization methods. In the following
experiments, we executed the four focus modes (table 5) in
full-fusion with the four defined systems (Conf-HalfLen,
Conf-FullLen, Conf-1s and Conf-2s).

5.1. Montages

The above experiments have all been executed with common
global average reference montage (AvgMnt) reference. Here,
we evaluate the effects of bipolar inter-hemispheric reference

Figure 9. Quantitative analysis of the EEG segment length (LG). Mean PRE and 95% CI (shaded area) obtained with different LG. Data
correspond to full-fusion set-up in no-focus experiments using Conf-1s (left) and Conf-2s (right) systems. A maximum of 20 subjects was
used in each experimental iteration. Refer to figure 7 for details on the legend, and to figure C.5 for further related results.
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montage (BIHMnt) and common Cz reference montage
(CzMnt) montages on the EEG discriminant information
compared to AvgMnt.

Results. Qualitatively, the differences across montages were
quite subtle (figure 10). Overall, AvgMnt seemed to have
slightly more stable spectral patterns. Occasionally, BIHMnt
showed a pronounced loss of information, probably due to
highly correlated inter-hemispheric channels3.

Quantitative results between and within databases were
quite heterogeneous. In general, mean PRE values between
montages were within 5 percentage points in Conf-1s and
Conf-2s systems, and within 10 percentage points in Conf-
HalfLen and Conf-Full-Len (figure 11 and tables C.8–C.10).
The application of artefact rejection had virtually no effect on
the described overall relationship between montages, other
than define their differences by reducing the dispersion of the
results (figure C.6, and tables C.8–C.11).

Discussion. The inhomogeneity of the results should come
as no surprise. Optimal montages have been described before
as highly dependent on the recording paradigm and level of
noise [31]. Interestingly, BIHMnt, although reducing the
volume of data by almost half, maintained a remarkably
similar performance (within 5% or 10% points), especially
with Conf-1s and Conf-2s systems. This makes it an attractive
option in scenarios where the volume of data is a concern.

Figure 10. Qualitative analysis of EEG montages. PSD (in dB) of a subject from Yeom’s database computed with BIHMnt (top), AvgMnt
(bottom-left) and CzMnt (bottom-right). The colour bar-code above each PSD represents changes in channels, in the piecewise-continuous
time axis. Each channel’s spectrum (H) is added to the right of the spectrogram using the same colour scheme as the channel bar-code.

Figure 11. Quantitative analysis of EEG montages with raw data
sets. Relative PRE values between BIHMnt–AvgMnt and between
CzMnt–AvgMnt. Boxes show results stacked across databases.
Box limits are 25 and 95 percentiles, while black bars shows
maximum and minimum values after excluding outliers (red
crosses). The red line within each box and triangle markers
shows median values and their 95% CI. To the right of each box,
corresponding mean PRE values from each database are shown
following the legend of figure 7. A maximum of 20 subjects was
used in each experimental iteration. Refer to figure C.6 for
further related results.

3 In cases where all rejected sensors cover a common area; e.g left frontal
lobe, the result of the interpolation of the sensors closer to the saggital
midline may be extremely correlated with that of its hemispheric pair,
resulting in an almost flat response of the BIHMnt.
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Across databases, AvgMnt is the safest option among the
montages tested.

5.2. Spectral normalization

Next, we normalized the PSD of each window segment with
the methods described in table 3. Following previous results,
we again used AvgMnt.

Results. In this case, the effect of each normalization varied
greatly across system configurations. Overall, each had a
homogenizing effect on the spectral pattern of the EEG,
especially for frequencies above ∼20 Hz (figure 12). This

effect was particularly strong for prcNorm, iqrNorm and
rNorm methods.

Quantitatively, results where again quite heterogeneous
(figure 13 and tables C.12–C.15). While Keirn’s database
always benefited substantially from normalization—with 20
percentage points of PPREm improvement on average—the
others showed great variability across systems. Overall,
normNorm, prcNorm and zNorm were the worst performing
normalizations. rNorm and, to a lesser extent, iqrNorm gave
equal or better performance than the raw PSD in almost all
cases, especially in Conf-1s and Conf-2s systems.

The rejection of artefacts by ADJUST (figure C.7 and
tables C.16–C.19) had a great impact on the relationship
between normalization methods and the raw PSD. In
particular, the latter gained the most from the cleaning,

Figure 12. Qualitative analysis of PSD normalization. Conf-2s PSD, in dB, of a subject from Ullsperger’s database. prcNorm, iqrNorm,
zNorm and rNorm are cubic root scaled (c.r.) instead, as they contained negative values.
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which translated in normalization methods being less
beneficial, or even disadvantageous.

Discussion. In line with [37, 41] results, normalization
approaches based on magnitudes sensitive to outliers had a
negative effect under some configurations. On the other hand,
those based on more robust measurements, such as rNorm
and iqrNorm, boosted the performance in almost all
cases, especially with optimal configurations (Conf-1s and
Conf-2s). This, together with the modulating behaviour of the
artefact rejection methods, suggests that:

(1) the discriminant information is coded within the
relationship between spectral coefficients (i.e. the global
spectral shape), rather than in the instant absolute power
of each frequency;

(2) and the enhancement observed via robust normal-
izations is, at least in part, due to the counteraction of
effects from artefacts.

5.3. Conclusions

In this experimentation block, we have assessed for the first
time the effects of EEG montages (time representation) on the
EEG subject discriminant information. Although AvgMnt
turned out to be the best performing montage on average
across system configurations, the performance of BIHMnt
was strikingly similar, especially when considering the highly
reduced data volume of BIHMnt. In addition, normalizing the
spectral coefficients using measurements robust against

outliers reduced the effect of noise and boosted the quality of
the data in almost all cases. Hence, it may be applied as an
alternative to artefact rejection methods.

6. Properties of the discriminant information:
results, discussion and conclusions

Next, we described some of the properties of the discriminant
information identified in the previous experimentation blocks.
Specifically, we studied the spatial and frequency distribution
of the discriminant information, as well as its uniqueness
across individuals and permanence along time.

We evaluated the systems Conf-HalfLen, Conf-FullLen,
Conf-1s and Conf-2s (sections 4.3 and 5) with the raw PSD
coefficients and with their rNorm version.

6.1. Spatial distribution

The discriminant information of different sensor locations
was evaluated through no-focus and sess-focus experiments in
freq-fusion architectures, i.e. running isolated experiments
within sensors.

Results. Looking at the PSD representations, although there
were instances of patterns with large variability across
sensors, there were also numerous cases where the pattern
remained relatively equal across channels (figure 10).
Quantitative results showed no clear pattern in the spatial
distribution of the performance across data sets, tasks or

Figure 13. Quantitative analysis of PSD normalization. Relative PRE values between the PSD normalized by each of the methods in table 3
and the raw PSD. Results are stacked across databases. A maximum of 20 subjects was used in each experimental iteration. Refer to caption
of figure 11 for details about the meaning of symbols within the image, and to figure C.7 for further related results.

16

J. Neural Eng. 12 (2015) 056019 M DelPozo-Banos et al



systems. In fact, this distribution varied even within
conditions. For example, focusing on the REO condition of
BCI2000 and DEAP databases, we observed a great
variability across system configurations as well as between
data sets (figures 14 and C.8). The removal of artefacts
brought the performance between channels closer by boosting
those with the worst PREm values.

Discussion. The lack of uniformity across and within
databases, tasks and systems suggests that there is no obvious
‘most-discriminative’ region. Rather, the homogenizing
effect of removing the artefacts hints that the performance
depends more on the strengths of the applied system and on
the idiosyncrasies of each session’s set-up, which affects the
quality of the signal individually on each channel. This
would explain the lack of consensus in the literature
regarding the performance of sensor locations during
subject identification. Looking at research with similar
results, such as in [9, 28, 34] or [1, 2, 50, 51], they all
relied on EEG signals recorded from a single task and from
the same database4.

On the other hand, one has to consider that the systems
applied here rely on the general spectral shape of the EEG.
Systems that focus on specific characteristics of the EEG
during a particular task, such as the power of the alpha rhythm
during REC or the P300 amplitude during VEP, can be
expected to have a more defined spatial distribution of the
discrimination power.

6.2. Frequency distribution

To study the effect of each frequency component, we ran
no-focus and sess-focus experiments with ch-fusion and
no-fusion architectures.

Results. In general, quantitative experiments showed noisy

PREm curves idiosyncratic to each database (figure 15).
However, within this variability, we observed some
common characteristics across data sets, the most distinctive
being a peak within the alpha rhythm. After this peak, the
PRE raised again passed 15 or 20 Hz, until it reached the
global maximum—in some cases, curves of Keirn’s database
decreased after reaching this maximum. With Conf-FullLen
systems, the PRE also increased to the left of the alpha peak
(towards lower frequencies) and reached a local maximum at
1 Hz. This behaviour was also reproduced in no-fusion
experiments within each channel.

The rejection of artefacts had no major effects on the
described behaviour (figure C.9). The performance of
frequencies above the alpha rhythm remained virtually the
same. With Conf-1s and Conf-2s systems, the discrimination
power of frequencies below the alpha peak raised, especially
with ADJUST processed databases where, on occasion, the
gain was as large as 30 percentage points. In some cases, this
increase created another local peak between 1 and 8 Hz.

Discussion. The observed behaviour is in line with those
presented in section 4.3. They also correspond with other
genetic [14, 53] and biometric [28, 43] studies at least with
regard to the amount of information within the delta and alpha
rhythms. In addition to this, our results suggest that
frequencies corresponding to the beta rhythm and up to
40 Hz carry as much discriminant information as the delta and
alpha rhythms. Furthermore, as reported in [24, 45], the high-
beta and gamma band (up to 40 Hz) reached performance
levels, on occasion, above those of lower bands.

6.3. Uniqueness

The current experimental step aims to asses the uniqueness of
the neural signature. If this signature is comprised of a finite
number of categorical characteristics of EEG activity, it will
only be able to classify subjects into said categories. Hence,
individual discrimination beyond these categories would not be

Figure 14. Quantitative analysis of the spatial distribution of the discriminant information. Mean PRE values obtained at each location with
the REO condition of BCI2000 (top) and DEAP (bottom) data sets when applying the systems Conf-1s (left), Conf-1s rNorm (centre) and
Conf-FullLen (right). Results correspond to freq-fusion ch-focus experiments, with a maximum of 20 subjects used in each experimental
iteration. Refer to figure C.8 for further related results.

4 Because databases are not generally labelled, it is difficult to be certain
whether the same database was used for different analyses. However, the
descriptions of the databases suggest that they used the same database.
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possible. This will be reflected as a performance slump when
the number of subjects in the system increases. In order for the
system to unequivocally classify among a large number of
individuals, the neural signature must be a continuous char-
acteristic. Thus, we tested the uniqueness of the neural signature

by evaluating the systems with an increased number of subjects
and analysing the dynamics of the obtained PRE curve.

Results. Differences across subjects in the shape of their
EEG spectrum are obvious (figure 16). From experiments,

Figure 16.Qualitative analysis of uniqueness. PSD, in dB, of four subjects from Yeom’s database, corresponding to the EEG sensor P3 and a
single task (self-representation).

Figure 15.Quantitative analysis of the discrimination power frequency distribution. Mean PRE and 95% CI (shaded area) obtained with each
frequency (ch-fusion experiments). Curves where smoothed by local regression, using weighted linear least squares and a first degree
polynomial model with a 3 Hz span. Graphs correspond to results obtained with the raw PSD (top) and rNorm PSD (bottom). A maximum of
20 subjects was used in each experimental iteration. Refer to figure 7 for details on the legend, and to figure C.9 for further related results.
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systems Conf-1s and Conf-2s were the most robust against the
rise in the number of subjects. In particular, their PREm
dropped less than 10% when increasing the number of users
from 5 to 20 (figure 17). With BCI2000 databases, their
performance fell less than 20% between 5 and 100 subjects.
The application of ADJUST artefact rejection attenuated such
decay by as much as 6 percentage points (figure C.10).

Discussion. Results show that EEG spectral patterns are
distinctive enough to discriminate between 100+ subjects. A
PRE of 80%, the lowest observed with Conf-1s and Conf-2s
systems for 100 subjects, represents an accuracy rate of
almost 80%. This is an encouraging result, especially
considering that the systems used here are fairly simple
ones. Overall, in line with [49], our results suggest that the
neural signature is comprised of continuous features. In this
regard, larger databases are necessary to find the true potential
of the EEG discrimination power.

6.4. Permanence

In a bid to evaluate the stability of the EEG subject traits, we
ran session-CV experiments. To allow a direct comparison of
results, we also ran extra tests using normal CV (no sess-CV)
with a K (from K-folds) equal to the number of sessions.

Results. From the representation of the spectrograms, time
seemed to have a moderate to large effect on the neural
signature (figure 18). Quantitatively, median PRE values
decreased less than 5 percentage points on Keirn’s database
and between 17 and 22 percentage points on Yeom’s data set
when comparing normal and sess-CV (figure 19 and
table C.20). The use of rNorm had opposite effects on both
databases, increasing the difference by ∼10 percentage points
in the former and reducing it by a similar amount in the latter.

Discussion. Genetic and neurophysiological studies have
described changes in human EEG activity across maturation
[55]. However, these are long term effects that are
disproportionally relevant to younger ages (until
approximately 19–20 years old). In the short term, the PSD
appears to be relatively stable, comparable with other
biometric modalities.

The above results are compatible with those obtained by
analogous experiments [8, 20, 27, 29, 32]. However, a
limitation of all of these studies (including the present one) is
the low number of subjects and sessions in the used
databases. Having said that, although a drop in performance
is anticipated when train and test sets drift further apart
in time:

(1) this can be circumvented with a multi-session or a
continuous training approach;

Figure 17. Quantitative analysis of uniqueness. Mean PRE and 95% CI (shaded area) for different numbers of subjects (NS) in the system and
each database. Results correspond to the rNorm system. Refer to figure 7 for details on the legend, and to figure C.10 for further related results.
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(2) results suggest that the decline may pose a problem no
worse than the one observed on other biometric
modalities; and

(3) this drop would be expected to be lower than the results
presented here—with a single training session, the
system is unable to model variations across time,
leaving it more vulnerable to time effects.

6.5. Conclusions

Along this experimentation block, we have defined various
properties of the discriminant information within the EEG
PSD, some of which were obscured by the lack of consensus
across previous research. Specifically, our results suggest that
there is no clear location outperforming others systematically

Figure 18. Qualitative analysis of permanence. PSD in dB of tasks T1 and T2 of one subject from Keirn’s database. The colour bar-codes
above each spectrogram represent changes in channels and sessions. PSD for each channel and session is attached to the right of the
spectrograms, using the same colour scheme as the channel bar-codes.

Figure 19. Quantitative analysis of permanence. Relative PRE values between normal and sess-CV experiments, obtained with the raw (top)
and the rNorm (bottom) PSD of Keirn’s (K) and Yeom’s (Y) databases. Note that for Keirn’s data set, Conf-HalfLen is equivalent to Conf-2s.
Refer to the caption of figure 11 for details on box markings within the image.

20

J. Neural Eng. 12 (2015) 056019 M DelPozo-Banos et al



across systems, databases and cognitive tasks. Hence, we
conclude that the relative performance of individual sensor
locations appears to be largely driven by idiosyncrasies of the
recordings set-up and by the characteristics of the system.

Looking at the frequency distribution of the discriminant
information, results hint at the existence of a performance
peak within the alpha rhythm. In addition, the beta rhythm, up
to 40 Hz, seemed as much or more discriminant than lower
frequencies. Finally, it should be noted that an extra perfor-
mance peak may arise below 5 Hz.

Vitally, our results suggest that this subject-specific
information is ‘unique enough’ to discriminate between a
high number of users ( 100> ) and is relatively constant along
short periods of time. Nevertheless, additional experimenta-
tion with larger databases recorded on multiple sessions—
with greater temporal distances between each session—are
needed to make stronger assertions in this regard.

7. Summary and overall conclusions

In this work, we have presented the results of an extensive
study of the individual’s discriminant information within the
time-frequency representation of EEG signals. In doing so,
we have used six databases (divided into eight data sets) with
different recorded cognitive tasks and states. This, together
with the performed complementary qualitative and quantita-
tive analyses, allowed us to distinguish inherent character-
istics of the EEG signal from idiosyncrasies of individual data
sets. Specifically, we ran three experimentation blocks, each
with a specific goal, which resulted in the following synthe-
sized recommendations and conclusions:

(1) Configuration of the PSD: recommendations.
(a) Record, at least, 5 s of EEG to perform the

identification.
(b) Divide the EEG into segments between 1 or 2

seconds long.
(c) If data volume and computational speed is not an

issue, use some degree of window overlap.
(d) Compute the spectral representation for each win-

dow, using a number of spectral coefficients similar
to the number of samples within the window to
maintain the spectral resolution.

(e) Retain a bandwidth from the lowest frequencies to
30 or 40 Hz.

(f) Perform classifications for each window individually
and generate a single response by fusing scores.

(2) Representation of the time and frequency domains:
recommendations.
(a) Use AvgMnt as the default montage.
(b) Consider using BIHMnt in cases where processing

time or data volume is a concern.
(c) As a substitute for complex artefact rejection

methods, you may normalize the spectral coefficients
with a method robust to outliers.

(3) Properties of the discriminant information: conclusions

(a) There seems to be no best performing sensor
location found across systems, databases and/or
cognitive tasks.

(b) In terms of frequency distribution, there is a
performance peak within the alpha rhythm. Frequen-
cies within the beta rhythm (up to 40 Hz) are much
or more discriminant than lower bands. Frequencies
below 5 Hz may also contain an important amount of
discriminant information.

(c) Subject traits within the EEG activity are ‘unique
enough’ to discriminate 100+ subjects when an
appropriate system configuration is used.

(d) Subject-specific EEG spectral patterns seem to be
‘permanent enough’ to use them as a biometric
modality.

In future works, we will use all of the above recom-
mendations and conclusions to (1) design an EEG based
subject identification system and (2) further explore the
properties of the discriminant information within the EEG.
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