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and electrophysiological (EEG) correlates of memory encoding and retrieval in highly practiced individuals.
Across five PEERS experiments, 300+ subjects contributed more than 7,000 memory testing sessions with
recorded EEG data. Here we tell the story of PEERS: its genesis, evolution, major findings, and the lessons it
taught us about taking a big scientific approach in studying memory and the human brain.

Keywords: memory, free recall, scalp EEG, cognitive modeling

Although Herman Ebbinghaus gained fame for his herculean 1,800
hr of self-experimentation on list learning (Ebbinghaus, 1885/1913),
much of what we have subsequently learned aboutmemory has derived
from single-session studies performed by fewer than 100 naive individ-
uals. This approach contrasts with research areas such as perception,
where a small handful of observers often contribute data across a
dozen or more experimental sessions. Whereas larger samples permit
broader inference, intensive study of a small number of subjects can
enable detailed analyses and model-fitting of individual behavior.1

The Penn Electrophysiology of Encoding and Retrieval Study
(PEERS) sought to obtain high-resolution, within-subject data from
a large number of subjects performing a variety of episodic memory
tasks. We pursued three primary aims across five experiments: (a) to
obtain sufficient trial-level data so that we could apply models to indi-
vidual subject performance measures, (b) to obtain sufficient data
across subjects to permit the analysis of individual differences, and
(c) to obtain high-quality continuous electrophysiological (EEG)
data during memory encoding and retrieval, thus allowing us to relate
brain measures to indices of performance with high reliability. To
study individual differences, we also collected a variety of psychomet-
ric measures, including scales of intelligence, personality, mood, and
anxiety.
We achieved these goals through a 10-year data collection effort in

whichmore than 300 subjects contributed data frommore than 7,000
sessions of memory testing. Although findings emerging from these
studies have appeared in earlier publications, the present article pre-
sents the overarching motivation, methods, behavioral and electro-
physiological results, and implications of this large memory study.

Background and Motivation

For science to advance humanity’s most noble goals, society must
trust thework of scientists. Failures to replicate high-profile scientific
findings have captivated the attention of both scientists and the lay
public, calling into question the enterprise of scientific inquiry.
Although research on human memory has fared better than some
subdisciplines, our field faces the same forces that impede replicabil-
ity. One such force is the extreme variability of human cognition,
behavior, and physiology (e.g., Kahana et al., 2018; Kahneman
et al., 2021). Empirical patterns can differ reliably across individuals
and even within an individual, and variability in these effects does
not arise solely due to external variables, such as the memorability
of items, or the conditions of encoding and retrieval. Rather, it
appears that variability results from endogenous factors within
each individual (Kahana et al., 2018; Weidemann & Kahana, 2021).

Cognitive neuroscience faces even greater challenges to replica-
bility than does cognitive psychology (Poldrack et al., 2017; Szucs
& Ioannidis, 2017). This is because variability in task performance
must give rise to variability in brain activity, but measured brain
activity includes additional sources in variability beyond that seen
in overt behavior. In the case of EEG, these sources of variability
include electromyographic (EMG) signals produced by eye and
muscle movements, as well as other sources of electrical noise out-
side of the subject. In the case of functional magnetic resonance
imaging, noise can come from head movements and non-cognitive
predictors of intracerebral blood flow (Liu, 2016). In addition,
these measurement modalities record only a small fraction of brain
activity, with the precise neural activity recorded varying across indi-
viduals and recording sessions. Moreover, many features of brain
activity that vary in a session have little to do with task performance
but may be correlated with other brain signals for uninteresting rea-
sons. Thus, studies seeking to establish brain–behavior relations may
require more trials to achieve the same level of statistical power than
do studies relying on purely behavioral measures. Yet, the cost of
obtaining neural measures forces researchers to economize on data
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collection, thus fueling variability across experiments. The highly
multivariate nature of neural data encourages researchers to look at
their data in myriad ways (curse of dimensionality). This increases
the chance of false positives unless every step of an analysis pipeline
has been “preregistered” (Simmons et al., 2011). On the other hand,
neural recordings typically producemanymore observations per unit
of time than behavioral measures, which in some cases may increase
statistical power to detect reliable brain–behavior relations. Future
research with large open data sets may help to unravel the complex
relations between these variables. To probe the upper bound of what
could be learned using scalp EEG, we assembled the PEERS data
sets, which comprise millions of encoding and retrieval events.
The large number of trials and sessions contributed by each subject
allowed us to conduct analyses at the individual trial level and vali-
date these analyses across sessions, people, and task manipulations.
Given that nearly all cognitive neuroscience data sets encompass

fewer than 100 hr of experimental data collection, increasing our
data set by a factor of 10 would have been sufficient to address repli-
cability. In PEERS, we exceeded this benchmark by a factor of 100.
Beyond replicability, PEERS sought to provide adequate data for
the study of individual differences in both overt behavior and physiol-
ogy, and also to provide data with sufficient resolution for individual
subject modeling (e.g., Healey & Kahana, 2014, 2016). The ultimate
goal of this program, which we have yet to achieve, is a detailed
model-based analysis of subject-specific electrophysiology. Rather
than waiting until all of the work is done, we have embraced an open-
science approach and have disseminated the PEERS data for several
years.We feel that it is now time to pull together the as-yet-incomplete
PEERS story, both in the interests of fostering a discussion of big sci-
ence approaches to the study of human cognition and to help further
disseminate PEERS data to interested scientists.

Method Overview

Each of the five PEERS experiments involved multiple sessions of
memory tasks with EEG recording. Although one might hope that this
major experimental endeavor resulted from a careful planning exercise,
with scholars representing diverse interests advising as to the optimal
choice of tasks, the initial choice of tasks arose from a desire to obtain
high-resolution data on a set of tasks that had fueled our lab’s theoret-
ical work on human memory. Each experiment involved some variant
of a free recall task. Experiments 1 to 3 included encoding task manip-
ulations, variation in distractor conditions, and end-of-session recogni-
tion and final-recall tests. Subjects completed these first three PEERS
experiments across 20 sessions. In addition, this cohort also completed
two sessions of standardized cognitive and emotional assessments
including the Wechsler Adult Intelligence Scale, the NEO Five
Factor Personality Inventory (McCrae & Costa, 2010), the California
Verbal Learning Test, and several subtests of the Wechsler Memory
Scale. PEERS Experiment 4 sought to maximize the statistical
power of data collected in a delayed recall-task without any encoding
taskmanipulations (we estimated, based on earlier PEERS studies, that
subjects could maximally complete 24 2-hr-long sessions in a single
term). Because human speech is a natural medium for recalling infor-
mation, we collected vocal responses which we annotated (offline) for
accuracy and response times. But because vocalization causes EMG
artifacts in EEG data, we conducted a fifth PEERS experiment to con-
trol for premotor correlates of retrieval. This last PEERS study con-
cluded just before the COVID-19 pandemic.

Due to the very substantial investment of time and resources, each
subject first participated in a screening session to ensure that they
understood the demands of the experiment before signing on for
the full experiment. Below we provide a concise description of the
experimental methods. Table 1 gives the number of subjects who
completed each experiment. Additional procedural details appear
in online appendix at https://memory.psych.upenn.edu/PEERS.

PEERS Experiments 1 and 3

Because Experiments 1 and 3 were virtually identical, we describe
their methods together. As illustrated in Figure 1A, each session com-
prised a series of 16 immediate free recall trials, each involving a
unique list of 16 visually presented words. Each session ended with
a recognition test. Half of the sessions were randomly chosen to
include a final free recall test before recognition (in final-free recall
[FFR], subjects attempt to recall as many words as they can remember
from all 16 lists). Experiment 3 differed from Experiment 1 in that a
subset of subjects received externalized free recall (EFR) instructions.
In externalized recall (Kahana et al., 2005), subjects verbalized all
words that came to mind at the time of test (even if they thought
those words did not occur in the most recent list or had already
been recalled during the current recall period) and pressed the space-
bar to indicate awareness of any such error.

Subjects encountered three types of lists: (a) no-task lists, which
they studied with the generic instruction of trying to learn the
items for a subsequent test, (b) task lists, where each item appeared
concurrently with a cue indicating one of two judgments (size or ani-
macy) the subject should make for that word, and (c) task shift lists,
where subjects alternated between size and animacy tasks every two
to six items within each list. The size task asked subjects “Will this
item fit into a shoebox?”; the animacy task asked subjects “Does this
word refer to something living or not living?” The color, font, and
case of the presented item indicated the current task. Each session
included 12 task lists and four no-task lists. The first session of
PEERS Experiment 1 included equal numbers of size, animacy,
and task-shift lists; subsequent sessions included three size, three
animacy, and six task-shift lists. We constructed a pool of 1,638
words for use in PEERS Experiments 1 to 3. Based on the results
of a prior norming study, only words that were clear in meaning
and that could be reliably judged in the size and animacy encoding
tasks were included in the pool.

PEERS Experiment 2

Experiment 2 introduced a within-subject, within-session, distractor
manipulation (Figure 1B). In addition to immediate free recall trials, as
in Experiments 1 and 3, this experiment introduced delayed free recall
and continual distractor-free recall, with distractor intervals of varying
duration. In each distractor interval, subjects solved math problems of
the form A+ B+C= ?, where A, B, and C were positive, single-digit
integers. When a math problem appeared, subjects typed the sum as
quickly as possible consistent with high accuracy (they received amon-
etary bonus based on the speed and accuracy of their responses). For
the distractor intervals in the first two lists, one list had a distractor
period following the last word presentation for 8 s and the other had
an 8 s distractor period prior to and following each word presentation.
In the remaining 10 lists, subjects performed free recall with five pos-
sible durations for the between-item and end-of-list distractor tasks,
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such that two lists had each of the five conditions. As listed here, the
first number indicates the between-list distractor duration and the sec-
ond number indicates the end-of-list distractor, both in seconds: 0–0,
0–8, 0–16, 8–8, and 16–16. A 0 s distractor refers to the typical, non-
filled duration intervals as described for Experiments 1 and 3. Subjects
encoded all items using either a size or an animacy judgment task.
Session 1 included seven size-judgment lists and seven animacy judg-
ment lists. Subsequent sessions included six task-shift lists, three size-
task lists, and three animacy-task lists.

PEERS Experiment 4

This experiment sought to simplify the methodology used in pre-
vious experiments, focusing exclusively on delayed free recall. Here
each of 98 subjects completed 24 sessions of delayed free recall.
Each session consisted of 24 trials, with each trial containing a list
of 24 individually presented words followed by a 24-s distractor
period (see Figure 1C). A random half of the lists (excluding the
first list) were preceded by a 24-s, distractor-filled delay. A free recall
test followed the postlist distractor on each list.
The word pool for this experiment consisted of a 576-word subset

of the 1,638-word pool used in a previous PEERS experiment, and
subjects saw the same 576 words (24 lists× 24 items) on each of ses-
sions 1 through 23 with the ordering of words randomized for each
session. The 24th session introduced a set of novel words. Subjects
were given a short break (�5min) after every eight lists in a session.

PEERS Experiment 5

The fifth PEERS experiment sought to contrast neural correlates
of retrieval following a very long delay, with neural correlates of
retrieval of a just presented single item. During each of the first
five sessions, subjects quietly read each of the 576 words used in
Experiment 4. After reading each word, they waited 1 s (or longer)
before saying it aloud. These 576 immediate recall trials occurred in
24 blocks of 24 items, each preceded by a countdown, thus mimick-
ing the 24-list structure of Experiment 4.
At the start of session six, subjects received a surprise free recall

task in which they were instructed to recall as many words as possible
from the previous sessions in any order, while also vocalizing any
additional words that come to mind in their attempt to recall these
items (externalized recall instructions: Kahana et al., 2005; Lohnas
et al., 2015; Zaromb et al., 2006). We administered this long-delay
recall task at the start of Sessions 6 through 10, giving subjects 10
min to recall as many of the 576 words as they could remember.
After this free recall test, subjects continued with the same immediate
recall task as in earlier sessions.

Compensation and Performance-Based Bonus

In each of the PEERS experiments, subjects received a base salary
for their participation. In addition, they received a modest bonus for
performance and a separate bonus for completing all of the sessions.
The performance bonus varied slightly across experiments, but it
incentivized subjects to achieve high levels of performance on
both the memory tasks and the arithmetic distractor tasks. In addi-
tion, we provided a bonus to subjects for maintaining a low eyeblink
rate during critical item presentation events.

PEERS Raw Data Repository and Online Method
Description

Data sharing is critical to the scientific impact of any large-scale
data collection effort like PEERS. Sharing data increases the transpar-
ency of our research, and we hope that it can enable other research
groups to replicate and extend our work in new directions. For max-
imal impact and integrity, best practice is to follow the FAIR data
principles (Wilkinson et al., 2016)—datamust befindable, accessible,
interoperable, and reusable. We chose to format our data according to
the increasingly popular and exceptionally well-documented Brain
Imaging Data Structure (BIDS; Gorgolewski et al., 2016), which
was initially developed for the functional magnetic resonance imag-
ing (fMRI) community and has been extended to support EEG in
recent years (Pernet et al., 2019). As a community standard BIDS
has gained tremendous momentum and financial support, leading to
the development of online data repositories like OpenNeuro
(Markiewicz et al., 2021) and tools for formatting and parsing data
with popular scientific programming languages like Python (we
used MNE-BIDS; see Appelhoff et al., 2019) and MATLAB.

The PEERS data, both behavior and electrophysiology, are freely
available as OpenNeuro Data Set ds004395 (Kahana et al., 2023).
Data can be downloaded directly through the OpenNeuro web inter-
face (https://openneuro.org/datasets/ds004395/) or by using their
command line utility tool. The data set has its own digital object
identifier (DOI) and citation tools are available on the data set web-
page. The Computational Memory Lab website also provides a
detailed methods description of each of the PEERS studies described
above: https://memory.psych.upenn.edu/PEERS.

Results

Here we present our results organized into five major sections. The
Overview of Classic Behavioral Findings section provides an overview
of the basic behavioral findings. The Individual Differences and
Cognitive Modeling section discusses both experimental and

Table 1
Demographic Information for PEERS Studies

PEERS experiment N Sessions Dates

Preliminary experiment �730 1 2010–2019
Exp. 1: Immed. recall+ task manip. Final-free recall. Recognition. 172 7 2010–2014
Exp. 2: Recall+ distractors. Final-free recall. Recognition. 157 7–9 2010–2014
Exp. 3: Exp. 1+ externalized recall. Final-free recall. Recognition 60 (IFR), 92 (EFR) 4 (IFR), 6 (EFR) 2010–2014
Exp. 4: Delayed recall 98 24 2014–2018
Exp. 5: Long-delay recall+ premotor control 57 10 2019–2020

Note. PEERS= Penn Electrophysiology of Encoding and Retrieval Study; Exp.= experiment; Immed.= immediate; IFR=
immediate free recall; EFR= externalized free recall.
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endogenous sources of variability in recall of items and lists. The
Variability in Recall Across Items and Lists section focuses on
EEG correlates of successful memory encoding. The EEG Correlates
of Successful Memory Encoding section focuses on individual

differences and model-based analyses of performance. The Spectral
Markers of Memory Retrieval section discusses EEG correlates of
memory retrieval. Whereas the Overview of Classic Behavioral
Findings section summarizes basic behavioral findings, including

Figure 1
Schematic Diagram of PEERS Methods

Countdown 
(10s; beeps 
at 3 and 0)

Word 1 Recall Period (75s)******
0.5 s

A+B+C=?

+
1500 ms

ISI
0.8-1.2s

Word 2 Word 24 A+B+C=?
ISI

1.2-1.4s

PEERS Exp. 4

PEERS Exp. 5

Recall Period (75s)******
0.5 s

+
1500 ms

1.2-1.4s

PEERS Exp. 2

Word 1

Exp.1: Immediate 
Free Recall (75s)

Exp.3: Immediate Free Recall 
vs. Externalized Recall (75s)

+
1500 ms

ISI
0.8-1.2s

Word 2 Word 
16

1.2-1.4s

PEERS Exps. 1 and 3

3 s 3 s 3 s

*****
beep

16 lists of 16 items = 256 words drawn from a pool of 1,638

24 lists of 24 items = 576 words

Countdown 
(10s; beeps 
at 3 and 0)

Word 1

Recall Period (10 m)

Instructions

+
1500 ms Wait 1s

1.2-1.4s

24 blocks of 24 items = 576 words

8s, 16s

A+B+C=?Word 1 Word 
2 Word 16

1.2-1.4s

3 s 3 s

Word 1 Word 2 Word 16

A+B+C=? A+B+C=?

A+B+C=?

3 s

Word 1 Word 2 Word 16

8s, 16s 8s, 16s

8s, 16s

24s

24s

Immediate Free Recall

Delayed
Free Recall

Continual Distractor Free Recall

12 lists of 16 items

Word 2
Wait 1s

1.6 s 1.6 s

Word 24
Wait 1s

1.6 s

1.6 s 1.6 s

+
REST

Session #
6-10

1-5

Word 3
Wait 1s

1.6 s

No Task Lists  (4)

Task Lists

Task shift lists (4)

size (4)
animacy (4)

Word 1 Word 2 Word 
16

Word 1 Word 2 Word 
16

Word 3

3 s

Word 3

Word 3

Word 4

Word 4

Word 4

3 s

Final Free Recall (5 minutes)

Item Recognition 
with Conf. 
Judgments

Final Free Recall (5 minutes)

Item Recognition 
with Conf. 
Judgments

Note. The same group of subjects took part in Experiments 1 to 3, across 20 experimental sessions. Experiments 4 and 5 involved separate subject groups,
recruited in later years of the project. Each experiment involved some form of a free recall task, and Experiments 1 to 3 also included recognition and final-free
recall tasks. Experiment 5 only included final-free recall. For Experiments 1 to 3, subjects either studied items without a specific encoding task, or judged items’
size or animacy. The color of the word bubbles in the first row of the schematic indicates the encoding task. Experiment 2 also included an encoding-task
manipulation not shown in the schematic diagram. The Method section provides many details omitted here. PEERS= Penn Electrophysiology of
Encoding and Retrieval Study; Exp.= experiment; Conf.= confidence; ISI= interstimulus interval. See the online article for the color version of this figure.
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those replicating prior work, subsequent sections highlight novel find-
ings that would not have been easily discerned without the substan-
tially greater statistical power afforded by the PEERS data sets.

Overview of Classic Behavioral Findings

The PEERS free-recall experiments replicated many classic find-
ings, including serial position effects (Deese & Kaufman, 1957;
Murdock, 1962), temporal clustering (Healey et al., 2019; Kahana,
1996; Ward et al., 2010), semantic clustering (Bousfield, 1953;
Howard & Kahana, 2002; Jenkins & Russell, 1952; Polyn et al.,
2009), the exponential growth of interresponse times with output
position (Murdock & Okada, 1970; Patterson et al., 1971; Pollio
et al., 1968; Rohrer &Wixted, 1994; Unsworth, 2007), and subjects’
tendency to commit extra-list intrusion (ELI) and prior-list intrusion
(PLI) as a function of their temporal and semantic relation to the
just-recalled items (Zaromb et al., 2006). Long et al. (2017) dis-
cussed results of the encoding task manipulation in PEERS
Experiment 1. Briefly, subjects exhibited better recall and stronger
temporal clustering under free encoding conditions than when
asked to make size or animacy judgments during word encoding.
PEERS Experiment 2 replicated all of the classic findings con-

cerning distractor effects, including the reduction in recency with
increased length of an end-of-list distractor, but recovery of recency
with increased length of a within-list (interitem) distractor (Bjork &
Whitten, 1974; Kahana, 2017; Lohnas & Kahana, 2014) (also, see
Figure 2). Here we can also see the striking similarity in recall
initiation across immediate and continual-distractor free recall,
and the substantial attenuation in recency in delayed free recall
(Figure 2C). As demonstrated by Howard and Kahana (1999), the
contiguity effect does not differ across the distractor conditions, indi-
cating that whatever enables subjects to make transitions between
neighboring items depends on the relative and not the absolute dis-
tances between the items (Figure 2D). Finally, we find striking
effects of semantic similarity on free recall (e.g., Manning et al.,
2012), across all distractor conditions (Figure 2E).
PEERS Experiment 3 compared free recall under standard and

externalized recall instructions. In externalized recall, the experimenter
instructs subjects to recall any item that comes to mind as they are try-
ing to remember the lists, even if they realize that it was not a studied
item, or if it is an item that they have already recalled. In these cases, we
instruct subjects to press the space bar to “reject” the item they just
recalled. As expected from prior work (Kahana et al., 2005; Zaromb
et al., 2006) externalized instructions elicit many more PLI and ELI,
but have little or no effect on correct recalls (Lohnas et al., 2015).
Inclusion of externalized recall instructions provided valuable data
on intrusions that rarely occur in standard free recall.
Because subjects participated in PEERS Experiments 1 to 3 as a

series of experiments, data from PEERS Experiment 3 provides
valuable information on free recall under conditions of high practice
(i.e., after performing 12 or more sessions of PEERS Experiments 1
and 2). Practice exerted a large effect on temporal organization, with
subjects exhibiting a stronger tendency to make transitions among
neighboring items in later experimental sessions (see Figure 3B).
This finding also appeared in PEERS Experiment 4.
PEERS Experiments 1 to 3 included two additional measures of

memory following all of the lists in a given session: on a random
half of sessions, subjects performed a FFR test on all prior lists.
This FFR test came immediately after the recall period for the

final list (see Figure 1). In FFR, subjects exhibited a long-term
recency effect, seen in the much higher recall rates for items on
the last few lists. Subjects also exhibited a negative within-list
recency effect, as seen in worse FFR rates for the last few items in
each list (Craik, 1970; Kuhn et al., 2018). After FFR (or if absent,
after the recall period of the 16th study list), subjects performed a
recognition memory task, with confidence judgments, on a percent-
age of items studied across all of the lists (see, Lohnas & Kahana,
2013; Weidemann & Kahana, 2016, for details). Performance in
these tasks replicated classic findings concerning the relations
between confidence, accuracy and response times, as well as yield-
ing novel insights into the relation between response time and con-
fidence (see Weidemann & Kahana, 2016).

PEERSExperiment 4 created a much simpler experimental scenario
in which to examine the electrophysiology of memory encoding and
retrieval. Free encoding instructions simplified item presentation and
minimized eye movements evoked by the task cue in PEERS
Experiments 1 to 3. Delayed free recall facilitated aggregation across
list items by reducing the size of the recency effect. Owing to its sim-
plicity and repetitive structure, PEERS Experiment 4 provides a partic-
ularly rich data set for the study of variability in memory, across items,
lists, and sessions (see Individual Differences and Cognitive Modeling
section). PEERS Experiment 5 aimed to test novel hypotheses regard-
ing the electrophysiological correlates of memory retrieval at short and
long delays. A discussion of the EEG correlates of memory encoding
and retrieval in each of the PEERS studies appears in later sections.

Individual Differences and Cognitive Modeling

PEERS data provided a unique window into individual differ-
ences in both behavior and physiology. Healey and Kahana (2014)
examined the effects of primacy, recency, temporal contiguity, and
semantic clustering at the level of individual subjects. They found
that 90% of Experiment 1 subjects showed recency, 93% showed
primacy, at least 96% showed a forward-asymmetric contiguity
effect, and 100% showed semantic clustering. Despite this remark-
able level of consistency, the magnitude of these effects varied
widely across individuals. Analyzing PEERS Experiments 1 and
2, Healey et al. (2014) found that these four effects represent statisti-
cally distinct sources of variability among individuals. Of these, only
temporal contiguity and semantic clustering correlated with overall
recall performance, suggesting that associative organization pro-
cesses contribute to successful memory search (see also Sederberg
et al., 2010; Spillers & Unsworth, 2011). Moreover, variation in
the temporal contiguity effect (but not the other effects) correlated
positively with full-scale Wechsler Adult Intelligence Scale
Intelligence Quotient (WAIS-IV IQ) (see Figure 4). These findings
suggest that the ability to control the drift of mental context represen-
tations may be critical not just to memory, but to general intellectual
ability (Healey & Uitvlugt, 2019).

We designed the PEERS experiments with the goal of modeling
individual-subject data and of using the estimated model parameters
to help understand individual differences. Healey et al. (2014)
showed one clear reason for the importance of subject-level analysis
and modeling: When averaged across subjects, it would appear that
in immediate recall, subjects mostly initiate with the final (recency)
items, but occasionally initiate with early (primary) items. In this
case, aggregation disguised the true nature of the data, wherein
most subjects almost always initiate with the final list item but
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some subjects almost always initiate with the first list item. Here the
average data did not provide an accurate representation of each indi-
vidual. It seems unlikely that one could discern this pattern of results
with a more typically powered memory experiment.
Before conducting individual-level modeling, however, Lohnas

et al. (2015) used the PEERS data to extend retrieved-context theory
beyond single-list behavioral data. They specifically sought to address
a fundamental and frequently neglected problem: How can a model
simultaneously account for the gradual accumulation of memories
over a lifetime and the specificity with which we are able to retrieve
memories learned in a given context? Unlike earlier implementations
of retrieved-context theory (RCT) that reset the memory system at the
start of each list (e.g., Polyn et al., 2009; Sederberg et al., 2008), they
extended the theory to continuously accumulate associations in mem-
ory. Their model, termed the context maintenance and retrieval
(CMR2) model, inherited basic assumptions of earlier RCT imple-
mentations, including the core idea of a slowly drifting representation
of temporal context (Manning, in press). The evolution of context fol-
lows the standard formalism of RCT in which features of the currently
experienced item (recursively) retrieve their associated past contexts,
which in turn update the state of context.
Because a theory of multilist memory must account for how sub-

jects target retrieval of items on the most recent list, data on recall
errors (intrusions) from prior lists place tight constraints on theory.

However, the sparsity of such PLIs has impeded theory develop-
ment. PEERS Experiments 1 and 3 provided Lohnas et al. with a suf-
ficiently large dataset to precisely quantify PLI trends and use those
to constrain their CMR2 model. Lohnas et al. (2015) proposed that
subjects internally generate more recalls than they report, and omit
recall of a generated item if it is not recognized as having been stud-
ied in the current list. Each generated item retrieves its associated
context state from study, and CMR2 only recalls a generated item
if it’s retrieved temporal context resembles the current context.
Although CMR2 can query which items are generated but not
recalled, subjects require additional instruction. In the EFR para-
digm, subjects attempt to recall all items that come to mind (e.g.,
Kahana et al., 2005; Roediger & Payne, 1985; Unsworth &
Brewer, 2010; Unsworth et al., 2010; Wahlheim et al., 2019). If
the subject perceives that they have recalled an item in error, they
may “reject” such an item by pressing the spacebar immediately
afterwards.

Lohnas et al. (2015) tested the generate-recognize mechanism
using data from PEERS Experiment 3 (as shown in Figure 1,
some subjects performed EFR, while others studied lists with the
same structure, but performed standard free recall). Although sub-
jects engaging in EFR produced more errors, the PFRs and SPCs
were nearly identical between the two groups, suggesting that EFR
relies on similar cognitive mechanisms to IFR. Buttressing this

Figure 2
Recency and Contiguity as a Function of Distractor Conditions in PEERS Experiment 2

C.

A.

D. E.

.
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Note. (A) Illustration of IFR, DFR, and CDFR tasks. (B) Serial position analysis showing recency in IFR, attenuated recency in DFR, and long-term recency
in CDFR. (C) Recall initiation, as measured by the probability of first recall, shows that initiating with recent items does not differ between DFR and CDFR. (D)
Contiguity is generally preserved in all three conditions. (E) Subjects are more likely to recall items that are semantically related to the just-recalled item.
PEERS= Penn Electrophysiology of Encoding and Retrieval Study; IFR= immediate free recall; DFR= delayed free recall; CDFR= continual-distractor
free recall; FR= free recall.
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account, Lohnas et al. (2015) found that CMR2 predicted the propor-
tion and probability of rejection for PLIs in the EFR group, as well as
reduced PLIs for the IFR group, using a single set of parameters for
fitting data from both subject groups.
Having established that CMR2 accounts for group-level recall

data, including rarely occurring PLIs, Healey and Kahana (2014)
used the multisessions PEERS data to evaluate the model’s ability
to account for variability in individual subject effects. Fitting each
individual who participated in PEERS Experiment 1, they found
that CMR2 provided a good fit to multiple behavioral effects in
�95% of individual subjects. As PEERS Experiment 1 included
data from older adults, Healey and Kahana (2016) further asked
whether the model could account for age differences in correct
recalls and intrusions. They first fit CMR2 to data from individual
younger and older adults using Kahana et al. (2002) as an indepen-
dent data set for model development, allowing all model parameters
to vary, and then identified the smallest subset of parameter changes

required to capture age-related differences. This method identified
four components of putative age-related impairment: (a) contextual
retrieval, (b) sustained attention (related to the primacy gradient), (c)
error monitoring (related to rejecting intrusions), and (d) decision
noise. Figure 5A–G shows that when this full model is applied to
the PEERS Experiment 1 data, it provided a reasonable account of
younger adults recall dynamics and that adjusting the four compo-
nents mentioned above enabled the model to account for age-related
changes in serial position effects, semantic and temporal organiza-
tion, and intrusions. They then extended CMR2 to provide a context-
similarity model of recognition judgments and age differences
therein, based on the same mechanism used to filter intrusion errors.
This joint model of free recall and recognition makes the novel pre-
diction that the number of intrusions a subject makes in free recall
should correlate positively with the number of false alarms they
make in recognition. As shown in Figure 5H, the PEERS data con-
firmed this prediction.

Figure 3
Contiguity Modifying Variables
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Note. (A) The contiguity effect is smaller when subjects perform an encoding task (making a size or animacy judgment) during study than when freely encod-
ing items. (B) Task experience amplifies the contiguity effect: a large contiguity effect appears on the first session and grows larger by the 23rd session. (C) The
contiguity effect also increases with intellectual ability, as measured by WAIS IQ. (D) Contiguity is preserved across the lifespan, but is larger for younger
adults than for older adults. WAIS IQ=Wechsler Adult Intelligence Scale Intelligence Quotient.

Figure 4
Individual Differences in Contiguity Predict Memory Performance and General Intelligence

Note. (A) The correlation between temporal factor scores and overall recall probability. Temporal fac-
tor scores give the average percentile ranking of the temporal lag of each actual transition with respect to
the lags of potential transitions. (B) Those subjects who exhibit greater temporal clustering during verbal
free recall (high temporal factor score) also exhibit higher scores on the Wechsler Adult Intelligence
Scale IV. IQ= intelligence quotient.
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Cohen and Kahana (2022) further evaluated the individual-
difference modeling approach by examining the role of emotional
information in the organization of memory. Analyzing data from
PEERS Experiment 1, Long et al. (2015) demonstrated that after
recalling a word with positive affective valence, subjects were
more likely to recall an item of the same valence (positive) as com-
pared with a negative or affectively neutral item (controlling for
available of these categories of items). Because similarities among
same-valence words are likely greater than among words from dif-
ferent valence classes, Long et al. went beyond the basic emotional
clustering result by showing that subjects exhibited reliable affective
clustering even after controlling for item similarity. Cohen and
Kahana (2022) took the same approach as Healey and Kahana
(2016), modeling individual-level data on the organization of mem-
ory, including temporal, semantic, and emotional clustering. They
found that the 24-experimental sessions contributed by each
PEERS Experiment 4 subject provided sufficient statistical power
to obtain reliable parameters at the subject level. They then used
parameters fitted to individual subjects in PEERS Experiment 4 to
generate and test novel predictions about how emotional disorders
relate to memory performance for emotional materials.

Variability in Recall Across Items and Lists

Cognitive processes that unfold during the encoding, retention,
and retrieval of an item all contribute to performance in recall and
recognition memory tasks. As such, neural measurements during
these phases can help disentangle their respective contributions to
subsequent memory. Successful encoding and retrieval of words,
however, may also reflect their psycholinguistic properties. By
amassing a very large number of trials involving recall and recogni-
tion of word lists, the PEERS data sets have permitted a detailed

view of the relation between word and list properties and their sub-
sequent memorability.

As a first case study, consider how memory for a word varies with
the word’s frequency of occurrence in the English language. Here
classic studies report a mirror effect in recognition memory, in
which subjects exhibit superior memory for low-frequency (rare)
words compared to high-frequency (common) words (Glanzer,
1976; Hall, 1954; Schulman, 1967; Shepard, 1967). Furthermore,
the mirror effect demonstrates how these low-frequency words pro-
duce a higher hit rate and a higher correct rejection rate than high-
frequency words (Gorman, 1961). In free recall, however, studies
using mixed lists have reported inconsistent effects, with some
researchers finding superior recall for rare words (DeLosh &
McDaniel, 1996; Merritt et al., 2006; Ozubko & Joordens, 2007),
and other researchers finding superior recall for common words
(Balota & Neely, 1980; Hicks et al., 2005). Lohnas and Kahana
(2013) sought to clarify this issue by analyzing the effects of word
frequency on both free recall and recognition in PEERS
Experiment 1. Unlike prior studies analyzing groups of low-
frequency versus high-frequency words, they analyzed memory per-
formance as a continuous function of word frequency. Using multi-
ple sessions per subject from PEERS Experiment 1 provided a
sufficient number of words at each frequency for every subject
thereby allowing this high-resolution view of the word-frequency
effect. In recognition memory, they found a pattern harmonious
with previous results: with increasing word frequency, hit rates
declined, and false alarm rates increased. However, in free recall,
they found a U-shaped pattern of results: subjects exhibited superior
recall for both rare and common words (see Figure 6).

As a second case study, we consider the broader question of why
some words and lists lead to better recall than others. Aka et al.
(2021) addressed this question by analyzing data from PEERS

Figure 5
Age-Related Changes in Recall and Recognition

Note. Panels (A) to (C) illustrate serial position, probability of first recall and contiguity effects; Panel (D) illustrates recognition memory hits and false alarms;
Panel (E) illustrates semantic organization; Panels (F) and (G) illustrate intrusion errors, and Panel (H) illustrates the correlation between intrusions and false
alarms. Black lines/bars indicate data from older adults; gray lines indicate younger-adult data. Solid lines with filled symbols or filled bars show subject data
and broken lines with open symbols or unfilled bars show context maintenance and retrieval model simulations. Cond.=Conditional; Resp.= response;
Prob.= probability. Adapted from “A Four-Component Model of Age-Related Memory Change,” by M. K. Healey and M. J. Kahana, 2016,
Psychological Review, 123(1), pp. 23–69 (https://doi.org/10.1037/rev0000015). Copyright 2019 by the American Psychological Association.
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Experiment 4, as each subject in that experiment studied the same 576
words in each of the 23 experimental sessions. A multivariate model
fit to word-level recall data revealed positive effects of animacy,

contextual diversity, valence, arousal, concreteness, and semantic
structure (listed in descending order of importance) on recall of indi-
vidual words. In their list-level recall model, Aka et al. (2021)
examined how the average word features in each list influenced
the average recall probability of that list. Here, average contextual
diversity, valence, animacy, semantic similarity (weighted by tem-
poral distance), and concreteness (listed in descending order of
importance) emerged as significant predictors of list-level recall
(see Table 2).

Although psycholinguistic variables, such as those examined by
Aka et al. (2021), can account for significant variability in item
recall, these factors account for a surprisingly small fraction of the
overall variability in recall performance at the list level. Kahana
et al. (2018) asked whether this variability in list-level recall could
be due to experimentally determined factors, including both average
item difficulty and list number. Although each of these factors
explained significant variability in list-level recall (see Figure 7)
for data on list number, Kahana et al. found the overall explanatory
power of these factors to be quite limited. In view of the tremendous
variation across lists and the limited explanatory power of their mul-
tivariate model, Kahana et al. speculated that endogenous, autocor-
related, neural activity may account for the unexplained variability.
They hypothesized that if an autocorrelated latent factor underlies
mnemonic variability then prior-list performance should serve as a
significant predictor of subsequent list recall. Indeed, they found
that this factor was the strongest predictor of recall in their multifac-
torial model. Evidence that this endogenous variability appears as
variable neural activity came from investigations of item and
list-level subsequent memory effects described in the following sec-
tion (Weidemann & Kahana, 2021).

Kreiger et al. further supported the endogenous variability hypoth-
esis. In PEERS Experiment 4, each subject performed amath distractor
task between the end of the study list and the recall period, and on half
of lists, subjects also performed a math task before the start of the list.

Figure 6
Word Frequency Effects in Recall and Recognition

B.

A.

Note. (A) Subjects recalled higher proportions of both low-frequency and
high-frequency words as compared with intermediate-frequency words,
regardless of whether the item was presented without an encoding task
(filled squares) or with an encoding task (filled circles). (B) Subjects
were more likely to incorrectly accept lures with increasing word frequency
(open symbols) and less likely to correctly recognize targets with increasing
word frequency (filled symbols), regardless of whether the items were pre-
sented with an associated encoding task (circles) or no task (squares). Data
from Peers Experiment 1 (984 words) were partitioned into deciles on the
basis of their word frequency counts in the CELEX2 database. Error bars
represent 95% confidence intervals.

Table 2
Fixed Effects of Variables Predicting Probability of Word-Level and
List-Level Recall in Multivariate Analyses

Predictors Mb SEb

Predictors of word-level recall
Concreteness 0.03*** 0.004
Contextual diversity 0.06*** 0.005
Word length −0.003 0.003
Valence 0.05*** 0.004
Arousal 0.04*** 0.004
Animacy 0.09*** 0.006
Meaningfulness 0.005* 0.005
Session number −0.009*** 0.0003

Predictors of list-level recall
Concreteness 0.002* 0.0008
Contextual diversity 0.008*** 0.001
Word length −0.0004 0.0008
Valence 0.005*** 0.0008
Arousal 0.001 0.0009
Animacy 0.004*** 0.0008
Meaningfulness 0.002** 0.0008
Session number −0.002*** 0.0001
Trial number −0.005*** 0.0001

Note. Word length, valence, arousal, and animacy are residualized variables.
* p, .05. ** p, .01. *** p, .001.
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The end-of-list distractor serves the role of disrupting active rehearsal
and thereby diminishing the recency effect (see Figure 8). Kreiger et al.
asked whether subjects might be sneaking rehearsals into the distractor
period and thereby boosting recall performance (akin to the rehearsal
borrowing analysis of Yonelinas et al. (1992)). Contrary to their predic-
tion, they found that trials with above-average math performance (for a
given subject) had stronger rather than weaker recency. Applying the
same analysis to the math task given before the start of each list,
they found that trials with above-average subject-specific math perfor-
mance predicted strong primacy effects on those trials. Both findings
align with the hypothesis that cognitive functions supporting both
memory and math fluctuate over time and that periods of good cogni-
tive ability lead to better math performance and better recall. We
returned to this question in our analysis of the neural correlates ofmem-
ory encoding at the item and list level, described in the EEGCorrelates
of Successful Memory Encoding section.
The PEERS studies have also revealed how encodingmechanisms

during initial recall can influence performance on subsequent FFR
and final recognition tests. Whereas end-of-session memory tests
typically yield just a single trial per subject, the multiple-session
nature of PEERS allowed for more detailed analyses of final recall
and recognition data. As initially reported by Craik (1970) and rep-
licated in our studies, subjects exhibit a negative recency effect in
FFR, with recall performance declining over the last few list posi-
tions. Analyzing data from PEERS Experiment 1, Kuhn et al.
(2018) found that negative recency critically depended on when sub-
jects recalled terminal list items during their initial free recall.
Specifically, negative recency arose primarily due to subjects recall-
ing terminal list items at the start of the recall period. When the lag

between studying and recalling an item was short, subjects were sig-
nificantly less likely to recall the item in final recall than when the lag
was long. Kuhn et al. (2018) interpreted this finding in relation to the
well-known spacing effect (Madigan, 1969; Melton, 1970): the
greater the spacing between two encoding events (in this case, the
second being the retrieval of an item) the better the memory for
those events. As further support for their interpretation, Kuhn
et al. (2018) found greater evidence of negative recency in earlier
than later output positions of the delayed free recall (DFR) and
continual-distractor free recall (CDFR) conditions of PEERS
Experiment 2. Reanalyzing PEERS data, Sheaffer and Levy
(2022) found analogous results of spacing on negative recency in
the final recognition data.

EEG Correlates of Successful Memory Encoding

Prior to the PEERS studies, a large body of research had already
elucidated EEG correlates of successful memory encoding and
retrieval, both as measured in the time domain (e.g., event-related
potentials) and the frequency domain (e.g., EEG oscillations at var-
ious frequencies). Typically, however, these studies would entail
having each of several dozen research subjects contribute one ses-
sion of data, often across multiple experimental conditions. The

Figure 8
Recall and Distractor Task Performance
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Note. (A) When a math distractor task follows a study list, there is a
greater difference in recall probability between good and bad math perfor-
mance for later serial positions. (B) When a math distractor task precedes a
study list, this difference is greater for earlier serial positions.

Figure 7
Predictors of Interlist Variability
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Note. Within each session, recall decreased across successive lists, but
increased following the two five-min breaks, consistent with a proactive
interference account.
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sparsity of data at the individual subject level, however, generally
precluded analyses of individual subject-level EEG data. With
PEERS, we assembled enough data to identify subject-level EEG
correlates of memory. However, before describing these subject-
level findings, we briefly mention some of the basic results that
emerged from analyses of aggregated data.
Analyses of PEERS Experiment 1 revealed that increases in

broadband high-frequency activity (HFA, defined here as 44–
100 Hz) and decreases in low-frequency activity (LFA, centered
around the 8–12 Hz alpha band) marked periods of successful
memory encoding, as defined based on the subsequent recall of
those items (Long et al., 2014). Long and Kahana (2017) further
asked if these HFA/LFA biomarkers track not only “whether” a
stimulus will be subsequently remembered but “how” a stimulus
is later recalled. The high-resolution of the PEERS data
set allowed Long et al. to compare spectral signals during the
study of words that were subsequently temporally clustered
(recalled immediately before or after an item studied in a neigh-
boring list position) or subsequently semantically clustered
(recalled immediately before or after an item with a high degree
of semantic similarity). They found that both forms of clustering
can be predicted by HFA increases during study, but in a task-
dependent manner. HFA over left prefrontal cortex predicted sub-
sequent temporal clustering, specifically during no-task lists,
when subjects freely encoded the presented words. HFA over
left prefrontal cortex also predicted subsequent semantic cluster-
ing, but only during task lists, when subjects made a semantic
judgment (size or animacy) on each word. These findings reveal
a common mechanism that underlies different forms of memory
organization and further suggests that temporal versus semantic
organization may trade off, given their dependence on the same
biomarkers.
Each of the 98 subjects who completed the 24 sessions of

Experiment 4 contributed EEG data during each of 13,824 item
encoding events. This uniquely large dataset allowed us to evaluate
questions about the neural correlates of memory processes at the
level of individual subjects while still providing an adequate sample
size for across-subject inference. Building on the modeling of item-
level memorability described in Variability in Recall Across Items
and Lists section, we set out to determine whether the EEG activity
during encoding that predicts subsequent recall better reflects item
properties or slowly changing brain states hypothesized to support
successful memory formation. This latter possibility aligns with
our findings that prior list performance and performance in a math
distractor task predicted recall of items whose study was separated
from these tasks by many seconds.
To test this endogenous variability hypothesis, Weidemann and

Kahana (2021) computed multivariate subsequent memory effects
by training subject-specific regression models to predict recall per-
formance from a range of neural features. To account for the effects
of external factors, they regressed out the “recallability” of each
item (determined from recall performance in an independent data
set), the serial position of each item within the study list, the posi-
tion of the corresponding study list within the study session (this
factor also captures effects of interference or fatigue from prior
lists) and the position of the current session within the series of ses-
sions (this factor captures anything specific to each testing session,
such as the time of testing, and any training effects from prior ses-
sions). Together these broad factors captured a wide range of

properties of individual words and the context in which they
were studied. By using neural features to predict the residual recall
performance, Weidemann and Kahana (2021) calculated a “cor-
rected” subsequent memory effect (SME) that statistically removed
the effects of these external factors in order to understand the extent
to which remaining endogenous factors can predict recall perfor-
mance. To assess the extent to which neural features that predict
subsequent recall performance persist beyond the individual item
presentations they also introduced a list-level SME that uses aver-
age neural activity across the entire study list to predict list-level
performance. This list-level SME can also be corrected by regress-
ing out remaining external factors that apply to entire lists (i.e., the
position of the list within the experimental session and the position
of the experimental session within the series of sessions). Figure 9
shows the full and corrected item-level (A) and list-level (B) SMEs
as correlations between model predictions and recall performance.
Whereas correcting for external factors reduced the SMEs some-
what, substantial SMEs remained even when accounting for exter-
nal factors, suggesting that a large proportion of SMEs are due to
endogenous factors. Additionally, it was possible to predict
list-level performance from list-averaged neural activity, support-
ing the conclusion that endogenous factors related to cognitive
function vary slowly (at least on the order of many seconds).
Separate analyses on intracranial recordings in neurosurgery
patients participating in a free recall task have confirmed these con-
clusions (Rubinstein et al., 2023). What these analyses do not
reveal, however, is the nature of the endogenous processes driving
these SMEs. General fluctuations in arousal or attention likely play

Figure 9
Item-Level and List-Level SMEs

item

item|all

0.0 0.1 0.2 0.3
Correlation (r)

list

list|all

0.0 0.2 0.4 0.6
Correlation (r)

A

B

Note. Distributions of correlations between multivariate model predic-
tions and free-recall performance at the item-level (A) and at the list-level
(B). Each panel shows the full SME (labeled “item” and “list,” respectively)
as well as a corrected SME which accounts for a range of external factors
that predict recall performance (“item | all” and “list | all,” respectively).
SME= subsequent memory effects. Adapted from “Neural Measures of
Subsequent Memory Reflect Endogenous Variability in Cognitive
Function,” by C. T. Weidemann and M. J. Kahana, 2021, Journal of
Experimental Psychology: Learning, Memory, and Cognition, 47(4),
pp. 641–651 (https://doi.org/10.1037/xlm0000966). Copyright 2019 by
the American Psychological Association. See the online article for the
color version of this figure.
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a role (a hypothesis supported by the fact that lower levels of alpha
power, which is generally regarded as inversely related to attention,
predict higher levels of recall), but the extent to which the identi-
fied SMEs also reflect activity that is specific to encoding processes
remains an open question.

Spectral Markers of Memory Retrieval

Li et al. (2024) examined the spectral correlates of successful
retrieval in Experiment 4. The large number of trials contributed
by each subject enabled comparison of EEG activity immediately
preceding correct recalls and intrusion errors, at the level of individ-
ual subjects. This analysis revealed marked increases in HFA in the
500 ms period leading up to successful recall. Accompanying these
HFAs increases, they also found decreases in 8–12 Hz alpha activity,
with the degree of these two effects exhibiting considerable variabil-
ity across subjects in both magnitude and frequency ranges. The
majority of subjects also exhibited modest increases in theta activity
preceding successful recall, but this effect did not prove reliable in
aggregate statistical comparisons. Figure 10 illustrates these results
separately for each of the 98 subjects.
Katerman et al. (2022) further investigated the spectral correlates

of memory retrieval after very long delays, using a prevocalization
period in immediate-recall a control for premotor activity (in
PEERS Experiment 5). In addition to demonstrating increased
HFA and decreased alpha activity, as shown by Li et al. (2024),
Katerman and colleagues also found a striking increase in frontal
theta activity in the moments leading up to successful retrieval, mim-
icking the encoding results described above (see Figure 11, where
black outlines indicate frequency-region pairs that met an
FDR-corrected p, .05 threshold for the comparison between
delayed vs. immediate recall). Given the far greater demands on epi-
sodic memory retrieval when recalling items after one or more days,
Katerman et al. (2022) interpreted the increased theta (T+),
decreased alpha (A−), and increased gamma/HFA (G+) as a
T+A−G+ of context-dependent memory retrieval.
Recognition memory tests confer certain advantages over recall

tests in the study of retrieval processes. Specifically, the recogni-
tion procedure provides experimental control over the arrival of
the retrieval cue allowing for precise analyses of cue-dependent
memory retrieval. In addition, the recognition procedure provides
valuable information about retrieval processes when subjects
have limited memory for a given target. PEERS Experiments 1
to 3 included a recognition phase at the end of each session in
which subjects made yes–no responses, followed by confidence
ratings. In addition to reducing uncertainty around timing of
retrieval processes, recognition tests also provide data on the
strength of the underlying memory signal (“memory strength”)
usually from introspective judgments in the form of confidence
ratings. Weidemann and Kahana (2016, 2019) examined the
extent to which implicit measures, such as response speed or
brain activity preceding the recognition decision, might reveal
memory strength without the need to rely on introspection. We
can assess different measures with respect to their ability to reveal
memory strength by constructing receiver operating characteristic
functions (ROC) that relate false alarm rates to hit rates across the
range of the measures (Wickens, 2002). Confidence ratings can be
arranged from “sure old” to “sure new” and the ROC function
traces out the cumulative false alarm and hit rates corresponding

to these ratings. With the assumption that binary old/new
responses are faster when response confidence is higher, individ-
ual responses can be similarly arranged according to response
speed from fast “old” responses to slow “old” responses to slow
“new” responses to fast “new” responses. The cumulative false
alarm and hit rates trace out a latency-ROC function that does
not depend on introspective judgments beyond the binary old/
new response. When using neural activity as features for a classi-
fier distinguishing between targets and lures, we can use the out-
put of that classifier (a continuous measure related to classification
“confidence”) to generate ROC functions that only depend on
neural activity and do not reflect any overt response. The area
under the corresponding ROC curve (AUC) indexes how much
the corresponding measure is able to distinguish old from new
items with an AUC of 0.5 indicating chance performance and
an AUC of 1.0 indicating perfect discrimination between old
and new items. Figure 12 shows the AUC for confidence ratings,
response latencies, and EEG activity with qualitatively similar
patterns across these measures and substantial correlations
between the different AUCs. These results suggest that these mea-
sures all offer different views on the same memory strength signal
underlying recognition decisions. Analyses on classifiers predict-
ing an item’s old–new status using brain activity during different
time windows in the lead-up to a recognition response also
showed that evidence is integrated into a unitary memory signal
giving rise to recognition decisions. This result contrasts with the-
ories proposing that different kinds of evidence dominate individ-
ual recognition decisions (Weidemann & Kahana, 2019).

Neural Context Reinstatement

Free recall confers specific advantages in the study of episodic
memory retrieval. In particular, the lack of external retrieval cues
in free recall allows one to use neural similarity between encoding
and retrieval to study reinstatement of the encoding activity in the
subject’s mind. Analyzing data from Experiment 1, Lohnas et al.
(2023) asked whether spectral features of scalp EEG would reveal
evidence of neural context reinstatement as previously uncovered
by intracranial EEG studies (Howard et al., 2012; Manning et al.,
2011). Furthermore, they examined how task manipulations influ-
enced the pattern of neural similarity between encoding and
retrieval. Lohnas et al. defined a neural measure of temporal context
using principles of RCT: studying an item should cause context to
drift slowly, and recall of an item should reinstate its temporal con-
text from study. They found that spectral features of scalp EEG activ-
ity demonstrate the reinstatement of temporal context preceding
word recall (Figure 13A).

Having demonstrated a neural signature of context reinstatement in
lists involving size and animacy encoding tasks, and in no-task lists,
they then examined the dynamics of context in task shift lists (see
Figure 1 for an illustration of the task manipulation). Lohnas et al.
hypothesized that a change in task disrupts temporal context (Polyn
et al., 2009) and, therefore, context should exhibit a greater change
across successive words if they are studied with the different tasks
than if they are studied with the same task. Consistent with this predic-
tion, neighboring items had reduced neural similarity in temporal con-
text when presented with different tasks. Lohnas et al. also found
strong evidence for the novel RCT prediction that, during recall,
the disruption to temporal context promotes increased temporal
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contiguity for same-task neighboring items, and decreased temporal
contiguity for neighboring items studied with different tasks.
Lohnas et al. also examined individual differences in neural tem-

poral disruption reinstated during recall. They defined each subject’s
neural similarity difference as the similarity of neighboring item

pairs with the same task minus neighboring item pairs with different
tasks. Across subjects, the neural similarity difference during encod-
ing was correlated with the neural similarity difference during recall.
This provides further evidence that temporal context, including dis-
ruptions to context representations, reinstates during free recall.

Figure 10
Subject-Specific Spectral Markers of Successful Episodic Retrieval
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Note. (A) Subject-specific independent t statistics for comparing the 500-ms period immediately preceding correct recalls with the same period preceding
intrusion errors (PLI and ELI) aggregated across all scalp electrodes. Each row shows the results from one subject, with rows sorted in order of ascending recall
performance. Power increases and decreases are shown in red and blue, respectively. (B) ROC curves created by varying the threshold value of ΔEEG used to
classify a retrieval as a CRor PLI. (C) ROC curve for classifying retrievals as a CRor ELI. PLI= prior-list intrusion; ELI= extra-list intrusion; ROC= receiver
operating characteristic; EEG= electrophysiological; CR= correct recall. See the online article for the color version of this figure.
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Furthermore, across subjects, the neural similarity difference
at recall correlated with the behavioral modulation of temporal con-
tiguity, suggesting that the neural measure of temporal context con-
tributed to subject behavior. Taken together, these results highlight
the impact of task changes on temporal representations, having
implications for neural activity and memory organization.

Data Requirements for Detecting Neural Context
Reinstatement

One might ask whether the effects we have reported in the PEERS
studies might have been detected using more typically powered data
sets. Here, we address this question by reanalyzing the aforementioned
EEG reinstatement analysis, resampling different subsets of the data
reproduced in Figure 13A and repeating the key comparison reported
by Lohnas et al. (2023). Specifically, we re-examined neural context
reinstatement for subsets of data representing a factorial of subsampled
subjects and trials. We constructed these subsets by sampling 25%,
50%, or 100% of trials crossed with the same three fractions of subjects
(Resulting in Nine Subjects× Trial Sampling Schemes). For each sub-
set type, we randomly sampled the full data set to create 25 unique sam-
ples. For each of these samples, we estimated the neural context
reinstatement effect by comparing neural similarity for lag=−1 to
neural similarity of lags=−3 to−5 (Lohnas et al., 2023). Each subset
comparison produced a single t-statistic, which we then averaged across
all 25 samples to estimate the reliability of the reinstatement effect.
Figure 13B illustrates how the reinstatement effect (the z transform of
the p value) varies with the number of trials included in the analysis.
Only the subsets that included at least half of the data provided adequate
power to detect a reliable reinstatement effect. Furthermore, due to the
variability of EEG recordings across sessions, each session needed to
have some lists with task changes and some without task changes.
Yet a single session could not provide an adequate number of observa-
tions to conduct the recall analyses. Thus, the large number of sessions

per subject, with varied task manipulations, supported the critical con-
clusions connecting neural measures of temporal context, event seg-
mentation, and memory. Thus, we can conclude that this theoretically
motivated EEG analysis relied on the large scale of the PEERS data set.

Lessons Learned

The PEERS project taught us many lessons, some of which we
briefly review here:

Subject Recruitment, Retention, and Performance
Monitoring

Each term we sought to recruit between eight and 12 subjects to par-
ticipate in the full 22 sessions of PEERS Experiments 1 to 3, or the 24
sessions of PEERS Experiment 4. Because many potential subjects
would either be unwilling or unable to make such a large time commit-
ment, we first recruited subjects for a preliminary session, to ensure that
they knew what the series of studies would entail. During this prelimi-
nary screening session, subjects performed a series of trials involving
immediate free recall of 15 item lists. At the end of the screening ses-
sion, we evaluated subjects’ blink rate, recall performance, and any evi-
dence of their inability to follow instructions. We invited subjects to
enroll in the full study assuming that they met a very liberal criterion
on these variables. The main value of this type of screening trial is to
ensure that subjects who enroll knowwhat they are “getting into” before
committing to 20+ sessions of data collection.

During the main experiment, we provided a performance and a
completion bonus (in addition to a base payment for each session).
Nonetheless, we still experienced attrition rates of around 30%. We
optimized the performance bonus for each study, generally reward-
ing subjects based upon a combination of low-blink rates during item
presentations, high recall, accurate recognition, and distractor task
performance.

Figure 11
Statistical Maps Illustrating Relative Increases (Red) and Decreases (Blue) in Spectral Power Across
Key Memory Contrasts for Eight Regions of Interest
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Note. Spectral power contrast for delayed recall versus immediate recall in PEERS Experiment 5. PEERS= Penn
Electrophysiology of Encoding and Retrieval Study; L= left; R= right; A= anterior; P= posterior; I= inferior;
S= superior; ROIs= regions of interest. See the online article for the color version of this figure.
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Our experience indicated that an experimenter should be present
during a subject’s first session of each new experimental phase. In
subsequent sessions, we allowed subjects to perform the tasks without
overt monitoring. However, we observed the subjects’ performance
remotely by monitoring their screen and in some cases with an exper-
imenter video.We also provided subjects with a “call button” that they
could use to ask for assistance from the experimenter.

Annotation of Vocal Responses

Although one can collect free recall responses using a keyboard,
spoken recall remains the most natural mode of output for subjects.
In addition, not all subjects are equally proficient at touch typing,
and when allowed to type responses they may wish to backtrack
and make changes before committing. This is an especially impor-
tant consideration when comparing younger and older adults.
Therefore, we allowed subjects to freely recall items by speaking
them out loud to a microphone and a computer recorded their
vocal responses. We developed custom software to help annotate
subjects’ vocal responses. This software allowed a research assis-
tant to listen to the recalled items and mark the identity and the
onset time of each spoken response (https://memory.psych.upenn

.edu/TotalRecall). Over the course of this project, we refined the
Penn Total Recall software, making it easier for researchers to pro-
cess the recordings efficiently. Nonetheless, it requires consider-
able time and care to annotate a single session of vocal recall
responses. In future work, it may be possible to fully automate
voice detection and response identification using tools such as
Google’s speech recognition engine. We experimented with
these tools towards the end of the PEERS study, but never achieved
the level of performance that would allow us to replace manual
annotation.

Measuring Recognition

In line with our goal of making user responses as natural as pos-
sible, we also opted for vocal responses during our recognition test.
Following a suggestion by our colleague, Professor Saul Sternberg,
we asked our subjects to say “pess” or “po” instead of “yes” or “no.”
Because the letter “P” is a stop consonant this would enable precise
answer timing and remove any differences in measure of reaction
time between yes and no responses. Weidemann and Kahana
(2016, 2019) used these data in their analyses of ROC functions.
We also collected confidence judgments and decided to take

Figure 12
Inferring Memory Strength From Confidence Ratings, Response Latencies, and EEG Activity

Note. (A) The area under the ROC curve (AUC) for functions constructed from confidence ratings, response latencies, and EEG. These AUCs indicate the
extent to which the corresponding measure reflects a memory signal. As detailed by Weidemann and Kahana (2019), we can calculate AUCs across all
responses or calculate AUCs separately within “old” and “new” responses. We see a qualitatively similar pattern across modalities with a stronger memory
signal for “old” than for “new” responses. (B) Scatterplots relating AUCs from confidence (C ) and latency (L) ROC functions to those from EEG activity.
We see strong relationships between these AUCS. As detailed by Weidemann and Kahana (2019), this strong correspondence is difficult to interpret because
every ROC function based on all responses is constrained to pass through the point corresponding to the overall hit and false alarm rate and thus the corre-
sponding areas are not independent. (C) As in (B), but for ROC functions only based on “old” or “new” responses, as indicated. These ROC functions are
not constrained to pass through the same point, but the corresponding ROCs are nevertheless highly correlated. EEG= electrophysiological; ROC= receiver
operating characteristic; AUC= area under the curve. Figure adapted from “Dynamics of Brain Activity Reveal a Unitary Recognition Signal,” by
C. T. Weidemann and M. J. Kahana, 2019, Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(3), pp. 440–451 (https://doi.org/
10.1037/xlm0000593). Copyright 2019 by the American Psychological Association. See the online article for the color version of this figure.
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confidence ratings after subjects made their recognition responses.
To ensure the highest quality response time data, we incentivized
subjects for their speed in responding “yes” or “no.”We also incen-
tivized them for their accuracy using their confidence judgments as
an index of performance.

Data Quality Control

Early in the project, we discovered that data quality issues could
emerge after a certain session (e.g., a problem with the testing
equipment) or that subjects might become confused regarding
the instructions for a particular phase of the task. To maintain
data quality we began creating automated subject reports, using
a cron job that ran overnight following annotation of the sub-
jects’ vocal responses (see below). These HTML or PDF reports,
which could be accessed through a webpage, indicated various
data quality metrics including word-presentation evoked poten-
tials, blink rates, recall performance, and the testing room in
which the session took place. The reports did not reveal any com-
parisons across conditions, or other results that could bias the
research in any way. The research team reviewed these reports
weekly and when they saw any anomalous data they presented
these findings to the principal investigator. We found these reports
to be so useful that we made them a standard part of all of our
research both in our scalp EEG studies and in our intracranial
EEG research.
When analyzing brain recordings, researchers rightly worry about

EEG artifacts corrupting their data. Such artifacts could result from
eye or muscle movements that create large electrical potentials or
from changes in the recording system’s ability to measure brain sig-
nals (e.g., resulting from electrodes losing their conductivity with
the scalp). Throughout the PEERS Experiments, we developed and
refined methods for identifying electrodes and trials with data quality
problems. Specific methods appear in each of the papers reporting
PEERS data.

Although we sought to minimize the impact of electrical artifacts
in our EEG analyses, the main purpose of such procedures is to
reduce the potential for large outliers to skew the distribution of
observed values across subjects, sessions, and trials. If artifacts do
not covary with physiological or behavioral effects, then having a
very large dataset avoids the risk of having a small number of large-
artifact trials dominate the aggregate results. The machine learning
approaches made possible by large datasets automatically down-
weight nondiagnostic electrical artifacts. Recent work has shown
that with such methods, data cleaning reduces statistical power to
observe established effects (Meisler et al., 2019).

Big Data Studies in Peer Review

We did not notice any striking difference on the part of reviewers
or editors in the handling of papers involving novel analyses of an
ongoing study, or retrospective analyses of established data sets,
as compared with traditional studies reporting novel data.

Recruiting Diverse Populations

When a study is not specifically focused on a particular subgroup of
individuals, one hopes the study’s findingswill generalize to society at
large. Our experimental design, which required participants to return
to the lab for 10 or more sessions, presents particular challenges to
recruiting a representative subject population. Specifically, most of
our subjects came from the undergraduate and graduate student com-
munity of the University of Pennsylvania. To increase diversity, we
placed flyers in the surrounding neighborhood and at nearby institu-
tions with more diverse student demographics. Nonetheless, the
very fact that our study required subjects to return for so many
repeated sessions introduced bias into our participant sample. We
hope that future studies of this kind could be specifically designed
to recruit participants from more diverse ages and educational
backgrounds.

Figure 13
Neural Context Reinstatement
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Note. (A) Consistent with RCT, the similarity between a recalled item’s neural context and its temporal neighbors
from study decreases with absolute lag. Replotted from Lohnas et al. (2023). (B) The significance of the critical
reinstatement effect decreases with subsets of subjects and/or trials. RCT= retrieved-context theory. Adapted
from “Neural Temporal Context Reinstatement of Event Structure During Memory Recall” by L. J. Lohnas,
M. K. Healey, and L. Davachi, 2023, Journal of Experimental Psychology: General, 152(7), pp. 1840–1872
(https://doi.org/10.1101/2021.07.30.454370). Copyright 2019 by the American Psychological Association.
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General Discussion

Beyond the specific lessons learned from PEERS, writing this arti-
cle led us to reflect on three broad issues raised by our adventure into
the world of big data, memory, and the human brain. First, we discuss
the utility of scalp EEG recordings in the study of human memory.
Many readers will assume that such data have great value for the sci-
ence of memory. Yet, some of us had our doubts at the outset of this
exploration. Second, we discuss the strengths and limitations of study-
ing well-practiced subjects. Third, borrowing a term from the field of
corporate finance, we introduce the idea of “Portfolio Choice” and dis-
cuss the question of how we ought to optimize the scientific portfolio
in the study of human memory. We close with a discussion of the
risks, rewards, and possibilities in the emerging era of big data.

On the Utility of Scalp EEG

Scalp EEG is among the oldest techniques available to cognitive
neuroscientists. Beginning with the classic work of Berger (1929),
EEG has become a staple of clinical neurology, with applications to
detecting epileptic seizures, identifying sleep stages and abnormal
sleep patterns, diagnosing perceptual disturbances, and many other
indications. Although some early scalp EEG studies examined corre-
lations between alpha activity and learning andmemory, EEG became
a commonly used method in the 1980s (e.g., Donald, 1980; Sanquist
et al., 1980). With the advent of more recent modalities of neural
imaging, one may wonder whether scalp EEG still has the potential
to address important questions in the realm of human memory.
The PEERS study sought to answer this question in the domain of

episodic memory. For example, intracranial EEG studies have
uncovered striking correlates of behavior at relatively high frequen-
cies (e.g., 80–150 Hz)—frequencies which are commonly filtered
out in scalp EEG studies, particularly those averaging the EEG sig-
nal into event-related potentials, due to concerns about electromyo-
graphic signals. PEERS data demonstrated that spectral correlates of
memory encoding and retrieval from noninvasive EEG recordings
closely resemble those from intracranial recordings in patients
with epilepsy. Whereas earlier EEG studies had documented effects
in the alpha and theta frequency bands, PEERS data highlighted rel-
evant signals in spectral activity at higher frequencies calling into
question the standard practice of filtering out these signals.
The large number of trials contributed by each PEERS subject

allowed us to evaluate scalp EEGs ability to forecast behavior, by train-
ing classifiers on either encoding or retrieval-related spectral activity.
These classification studies required many more trials to achieve the
same classification performance as intracranial EEG classifiers.
Specifically, we found that scalp EEG training data from 500
24-item lists provided classification performance similar to that
obtained with 50 12-item lists of intracranial EEG data. This 20-fold
difference likely reflects the much higher spatial resolution of intracra-
nial recordings as well as the ability to sample deeper brain structures.
Although we do not have hard numbers to compare our PEERS results
to other recording methods, such as MEG or fMRI, it is at least grati-
fying to know that given sufficient data, EEG can reliably perform the
same classification tasks as intracranial recording studies.2

Because researchers can obtain scalp EEGdata efficiently and at low
cost from both healthy adults, and from diverse patient populations, it
offers unique advantages over other recordingmodalities, at least at the
time of this writing. The PEERS studies demonstrate howmultisession

data collection allows for decoding at the individual subject level.
Future work will illuminate the value of model-based electrophysiol-
ogy for furthering our understanding of cognitive processes.

Strengths and Limitations of Studying Well-Practiced
Subjects

Subjects in the PEERS experiments contributed between seven and
24 sessions of experimental data, thus ensuring that they were familiar
with the tasks being performed. In later sessions, we would consider
themhighly practiced at performing ourmemory tasks. Indeed, subjects
performed a preliminary session in which they became comfortable
with having electrodes applied to the scalp and performing memory
tasks while minimizing eye movements. Familiarizing subjects with
our procedures reduced task-related anxiety and the variable rates at
which naive subjects learn how to perform tasks, where such variability
can introduce significant noise into measured behavior and physiology.
On the other hand, our design choice runs the risk of confusing highly
idiosyncratic task-specific strategies or control processes with more
general memory phenomena. Indeed, analyses of the PEERS data by
Romani et al. (2016) show that subjects alter their strategies across trials
and sessions which, for some subjects, results in substantial perfor-
mance improvements. This raises the question of whether the findings
reviewed above generalize to naive participants. Examining practice
effects in the PEERS data suggests that several core effects became
apparent long before extensive practice. For example, contiguity effects
appear in the very first intake session of PEERS (Healey et al., 2019).

Recent internet-based studies have complemented the PEERS
approach by collecting a single trial’s worth of behavioral data from
1000’s of subjects. Such studies have found that key serial position
and contiguity effects appear on the very first trial among naive sub-
jects, and even with incidental encoding (Healey, 2018; Mundorf et
al., 2021). Not surprisingly, then, the performance of well-practiced
subjects reflects a complex interplay between general memory princi-
ples and task-specific control processes. In this regard, a great advan-
tage of the high-resolution PEERS data is the ability to use modeling
and detailed analyses to precisely disentangle task-general memory
processes from task-specific strategies (Healey & Kahana, 2014).

PEERS data also facilitate the evaluation of machine learning
approaches to predicting variability in memory behavior. In our
experience, models relating EEG features to behavioral outcomes
vary considerably across individuals such that data contributed by
a given subject will typically yield a far better forecast of behavior
in unseen sessions than data contributed by other subjects.

What Is the Optimal Scientific “Portfolio”?

When making decisions across multiple projects, investors and cor-
porations face a fundamental “portfolio allocation” problem. This is the
same problem that faces scientific investigators deciding to allocate
resources across projects. Scientists usually have manymore good pro-
jects than there is time or grant support to carry out the work; like the
company, they face a budget constraint and must make wise decisions
about their resource allocation. The problem of portfolio choice is rel-
evant not only to an individual investigator but also to a scientific field

2We collected half of our PEERS Experiment 4 data with water-based and
half with gel-based EEG systems (BioSemi and EGI) and we did not find any
reliable difference in classification performance between the two systems.
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as awhole: granting agencies, for example,must decide how to allocate
resources across projects.
Throughout its short history, experimental psychology has

embraced a model of small science (Ebbinghaus, 1885/1913, is
the famous first exception). Individual investigators, or more typi-
cally individual trainees, design and carry out small-scale experiments
on humans or non-human animals. In the case of human research,
each subject typically takes part in just 1 hr-long session. A survey
of recent articles published in the Journal of Experimental
Psychology: Learning, Memory, and Cognition reveals that a typical
experiment entails fewer than 40 hr of data collection and a typical
publication includes approximately three experiments. Figure 14
shows the median and interquartile range across articles published
in each of the years 2000, 2010, and 2015–2022, with the number
of articles included in the survey indicated below each year. As the fig-
ure indicates, although some publications reported several hundred
hours of experimentation, the majority report fewer than 100 hr of
human experimental data, with a slight upward trend across the
years. Although these publications may afford the power required to
support their main conclusions, many will lack adequate statistical
power to support secondary analyses, where such analyses may
offer insights into the higher-order structure of the data. Certainly,
we are beginning to see an increase in the number of publications
reporting crowdsourcing experiments oftenwith large samples of con-
venience, but these studies generally provide very limited data on each
individual subject, and we do not yet have the technology to crowd-
source neural recording data (though this may change sooner than
we expect). We are also beginning to see studies reporting secondary
analyses of previously published data, which is awelcome trend in our
view. Yet, the allocation of science to originally and singly published
studies versus secondary analyses remains markedly lopsided.

One reason to avoid large allocations to single experiments, or sin-
gle research teams, is to diversify the risk. This is a sensible approach,
but if all of our knowledge depends on small experiments, this actu-
ally increases risk as these experiments cannot answer questions
that require a large quantity of data. Over time, researchers will
have answered most, if not all, of the major questions that can be
answered with experiments involving fewer than, say, 10,000 trials
(e.g., 200 trials× 50 subjects). This may encourage researchers to
form little cottage industries, promoting new phenomena that are
often little more than rebranded variants of established paradigms
and findings. New discoveries will then rely on new technologies,
such as novel methods for recording brain data or manipulating
brain activity (Ezzyat & Suthana, in press; Helfrich et al., in press).
But for behavioral research, our knowledge will become stale, and
without a way forward, much of what we know may be lost but for
a few old textbooks rarely studied by the next generation of scientists.
Yet big data can also be a new technology; by amassing large numbers
of observations under varied conditions, researchers can exploit pow-
erful new statistical techniques to find hidden structure in data that has
long been in plain sight. Think of big data as a kind of microscope that
allows us to zoom into a phenomenon and see structure that was pre-
viously obscured within the error bars of our small experiments.

When a field invests in big data, it can be a boon for early career
researchers who have not yet established laboratories capable of gen-
erating large datasets. These researchers should be able to freely
access data from many labs, answering questions that they could
not easily answer by collecting new data of their own. However, if
we are to invest in big data as a field, we must go beyond making
the data publicly available; we have to also make the design of exper-
iments and data collection a distributed process, where multiple
researchers contribute to the planning of future studies.

Figure 14
Hours of Experimental Data per Publication (2000, 2010, and 2015–2022)
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Note. We surveyed articles published in the Journal of Experimental Psychology: Learning, Memory, and
Cognition that included sufficient information to estimate the number of experimental hours contributed by research
subjects. For each year we report the median and interquartile range, based on the sum of hours across all experi-
ments in each publication. The number of evaluated articles appears below each year.
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Big Data: Risks, Rewards, and Future Challenges

We have heard colleagues voice several concerns about the big data
approach exemplified in the PEERS project. One criticism that
emerged early in our project concerned the law of diminishing returns.
A distinguished colleague raised this objection, pointing out that as we
collect more data the standard error will shrink as the ratio of the
square root of the number of observations. Surely, it would be better
to conduct a larger number of manipulations than to continually invest
resources in the face of diminishing returns. This objection arose as
one of us (Michael J. Kahana) presented some early PEERS findings.
After being tongue-tied for a few moments (or longer), the presenter
recalled many instances in his past research where additional data
revealed some important result via a new “cut” of the data space. In
essence, every time you think of an interesting new way to partition
your data your sample size shrinks, and once again each additional
observation provides valuable information. Just as fabricating a
more powerful microscope or telescope allows you to see things
that were invisible to previous generations of scientists, so too, the
additional power provided by high-resolution data peers beneath the
surface of our current knowledge, paving theway for new discoveries.
Another objection, highlighted by the current emphasis on replica-

bility, is that perhaps some peculiar feature of a large study will gener-
ate results that do not generalize across diverse situations. Each PEERS
experiment entailedmyriad small decisions which could affect the data
in unknown ways. Would it be smarter to diversify our research invest-
ment by having many smaller studies that vary these methodological
choices?We appreciate the value of this objection andwould not advo-
cate for a cessation of small-science-style experiments. Rather, we see
big data as an important addition to the scientific portfolio, comple-
menting smaller studies. Indeed, the discoveries made possible with
big data can inspire conceptual replications with smaller studies.
Although PEERS has already taught us a good deal about memory

and its neural correlates, we see several exciting opportunities for
future explorations. First, none of the analyses conducted thus far
have delivered on the promise of using data on both memory and
physiology to evaluate computationally explicit theories of memory.
This challenging and rewarding endeavor stands in wait for the ambi-
tious researcher. Second, ancillary data that we have collected on per-
sonality, mood, and intellectual abilities have yet to be studied in
relation to neural measurements and their cognitive correlates. Such
analyses could provide valuable new information on the neural
basis of individual differences and the potential utility of neural
recordings to inform our understanding of the relation between cogni-
tion and emotion. Finally, we have only begun to look at data from our
aging subsample described in the Appendix. EEG data collected on
older participants, some of whom contributed more than 20 experi-
mental sessions, can help us understand the EEG correlates of variable
memory performance in a participant group at risk for memory loss.
Looking beyond PEERSwe see a variety of exciting uses of big data

in the science of human memory. The internet represents a burgeoning
modality for large N studies, both via traditional memory tasks deliv-
ered remotely (Mundorf et al., 2022) and throughmassivememory sur-
veys administered via user interactions with products such as online
trading platforms (Jiang et al., 2022). Large online gaming communi-
ties, such as the players of Sea Hero Quest or Chess, provide another
valuable source of data on memory and cognitive processes (Coutrot
et al., 2022; Russek et al., 2022; Spiers et al., 2023). Although the abil-
ity to capture human neural data remotely did not exist when we

conducted the PEERS experiments, the authors predict that future read-
ers will see these technologies permeate their daily lives.

We see the PEERS project as a test case in applying big-data
approaches to studying human memory. The strongest endorsement
of our approach derives from other investigators using PEERS data
to answer their own questions. We have begun to see this happen
(Madan, 2021; Naim et al., 2019; Osth & Farrell, 2019; Popov &
Reder, 2020; Romani et al., 2016; Sheaffer & Levy, 2022; Zhang
et al., 2023) and hope that this article, in synthesizing key motiva-
tions, methods, and discoveries, will prompt additional investigators
to consider the value of this approach.
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Appendix

PEERS Multisession Aging Study

PEERS included a cohort of 39 older adults who each participated
in 10 experimental sessions (the preliminary screening session, seven
sessions of PEERS Experiment 1, and the two sessions of psychomet-
ric testing described previously). Analysis of data from these older
adults replicated several basic findings that suggest cognitive aging
impacts some memory processes more than others (Healey &
Kahana, 2016). For example, whereas therewas substantial age-related
impairment in free recall there was a more modest age-related impair-
ment in item recognition (Schonfield & Robertson, 1966). Even
within free recall, older adults showed a complex pattern of preserved
and impaired functioning. Specifically, older adults showed no deficits
in recall initiation (primacy and recency, Kahana et al., 2002) or
semantic organization. They did, however, show a substantial reduc-
tion in temporal organization (a reduced contiguity effect, Figure 3,
see Healey et al., 2019; Howard et al., 2006; Wahlheim & Huff,
2015). Older adults also exhibited a greater tendency to commit
prior and ELIs (Wahlheim et al., 2017; Zaromb et al., 2006), but
there were no age differences in the tendency for PLIs to come from
recent versus remote lists.

The EEG data collected from older adults allowed us to investigate
the biomarkers of this pattern of age-related behavioral change.
Healey and Kahana (2020) found that age-related memory deficits
are associated with differences in how neural activity changes across
serial positions during study. Previous work had established that,
among younger adults, oscillatory power changes in a highly consis-
tent way from item-to-item across the study period (Sederberg et al.,
2006). The PEERS aging data showed that at frequencies below 3
Hz and above 14Hz there were virtually no age differences—at
these frequencies power tended to decrease rapidly across serial posi-
tions, regardless of age. In contrast frequencies between 4 and 14Hz
showed very large age differences. Whereas for young adults, power
at these frequencies tended to increase across serial positions, for older
adults power decreased across serial positions in an almost complete
crossover interaction. That is, at these frequencies, older adults
showed higher power than younger adults early in a study list, but
the age difference reversed at later serial positions. Moreover, older
adults with the smallest behavioralmemory deficits showed the largest
departures from the younger adult pattern of neural activity. This result

(Appendix continues)
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may suggest that age differences in the dynamics of neural activity
across an encoding period reflect changes in cognitive processing
that compensate for age-related decline.
To investigate longitudinal age-related change in memory, we

recruited a subgroup of older adult subjects to return each year
to repeat the seven PEERS Experiment 1 sessions. Among the
original cohort of older adults, eight came back for 5 years of
repeat testing sessions. This extensive within-subject data allowed
us to evaluate age-related changes in performance while factoring
out the potential effects of repeated testing. Broitman et al. (2020)
fit a model to session-level changes in performance that included a
term for the established power-law improvements in task perfor-
mance resulting from practice (Anderson et al., 1999) and the

effects of aging, which we assumed to be approximately linear
across this 5-year period. When applied to our annual-testing sam-
ple, the model uncovered both significant practice effects (an
average increase of 0.72% annually) and a modest age-related
decline in recall probability (an average of 0.14% annually).
These model-based analyses illustrate how one can use data
from multi-session experiments with small number of subjects
to address questions normally studied in large-scale individual
difference studies.
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