
Signal detection theory (SDT) has become a prominent 
and useful tool for analyzing performance across a wide 
spectrum of psychological tasks, from single-cell recordings 
and perceptual discrimination to high-level categorization, 
medical decision making, and memory tasks. The utility of 
SDT comes from its clear and simple account of how detec-
tion or classification performance can be translated into psy-
chological quantities, such as sensitivity and bias. Whether 
its use is appropriate for a specific application depends on a 
number of underlying assumptions, and even though these 
assumptions are rarely tested, SDT has proved useful enough 
that it is considered one of the great successes of cognitive 
psychology. Yet, SDT has also undergone criticism, which 
began to emerge when this theory was relatively young.

Criticisms of SDT
SDT assumes that percepts are noisy and give rise to 

overlapping perceptual distributions for signal and noise 
trials. In order to distinguish between signal and noise tri-
als, the observer uses a decision criterion to classify the 
percepts. Signal responses are “hits” when they are cor-
rect and “false alarms” when they are incorrect; similarly, 
noise responses can be classified as “correct rejections” 
and “misses.” Many criticisms of SDT have centered on 
how the observer places a decision criterion during a de-

tection or classification task, and whether a deterministic 
criterion is used at all (see, e.g., Dorfman & Biderman, 
1971; Dorfman, Saslow, & Simpson, 1975; Kac, 1969; 
Kubovy & Healy, 1977; Larkin, 1971).

Clearly, when initially performing a signal detection 
task,1 an observer may be unable to estimate stimulus dis-
tributions and payoff values accurately; thus, one might 
expect the placement of a decision criterion to improve 
with experience, approaching a static optimal criterion. 
Yet, some results suggest that even with extensive practice, 
responses can be suboptimal: There are numerous demon-
strations of human probability micromatching in signal de-
tection tasks (see, e.g., Dusoir, 1974; Lee, 1963; Thomas, 
1973, 1975) and other demonstrations that static decision 
criteria are not typically used (e.g., Healy & Kubovy, 1981; 
Lee & Janke, 1964; Lee & Zentall, 1966; Treisman & Wil-
liams, 1984). Despite the fact that models accounting for 
these dynamics are based on a fairly reasonable assump-
tion (i.e., that the decision criterion should improve with 
experience), they have not enjoyed the success of classic 
SDT—probably because they add layers of complexity to 
the theory that are not easily accommodated or validated. 
Given that even the basic assumptions required by SDT are 
rarely tested, it is perhaps not surprising that tests of these 
additional factors happen even less frequently.
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offs, in order to encourage the observer to adopt different 
response policies. The ROC function is formed by plotting 
hit rate against false alarm rate for these different condi-
tions. The form of this function can be compared with the-
oretical functions generated from Gaussian distributions 
to determine whether the distributional assumptions of the 
model are appropriate. Estimating an ROC function this 
way is costly and time consuming; thus, a more efficient 
procedure relying on confidence ratings is often used. 
Rather than asking the observer to adopt a single confi-
dence criterion throughout a task, one instead asks for a 
confidence rating qualifying each response, which can 
then be used as a stand-in for different criterion levels. The 
resulting confidence ROC (C-ROC) function also enables 
other factors, such as base rate, to be manipulated simul-
taneously, thereby allowing another fundamental assump-
tion of SDT to be tested: Manipulations of signal base rate 
or of response payoff should not change the perceptual 
distributions of signal or noise trials and should therefore 
produce C-ROC functions that lie on top of one another 
(although the points associated with specific confidence 
values may lie at different positions on the function).

Balakrishnan (1998a) conducted experiments that tested 
this prediction. He formed C-ROC functions for two condi-
tions of a detection experiment: one in which the stimulus 
and noise trials were equally likely, and one in which the 
stimulus appeared on only 10% of the trials. As is shown 

More recently, Balakrishnan (1998a, 1998b, 1999) 
raised new objections to SDT on the basis of consis-
tent violations of its assumptions: (1) Receiver operat-
ing characteristic (ROC; see below) functions produced 
under different base rates have different shapes (whereas 
SDT predicts that they should lie on top of one another), 
and (2) confidence-based measures typically indicate no 
change of the decision criterion in response to base rate 
manipulations (see, e.g., Balakrishnan, 1999). Balakrish-
nan’s criticisms differ from the earlier criticisms discussed 
previously, because he did not simply suggest that the vio-
lations of SDT are due to a suboptimal criterion placement 
or similar imperfections within the framework of SDT. 
Instead, he claimed that they expose fundamental flaws in 
the most basic assumptions of SDT. Therefore, his criti-
cism calls into question the results from thousands of pub-
lished studies that have relied on SDT’s assumptions to 
quantify perceptual and decision processes.

In this article, we will examine the violations of SDT and 
argue that they could stem from decision noise—uncertainty 
in the mapping between an internal perceptual state and 
the overt response. Furthermore, we will present a new ex-
tension of SDT—the decision noise model (DNM)—that 
incorporates decision noise and perceptual factors in sig-
nal detection tasks. We will also introduce a new type of 
ROC function that can be used in conjunction with con-
ventional confidence-based ROC functions to distinguish 
perceptual and decision processes. Our application of this 
ROC analysis to the data of a new stimulus classification 
experiment—along with the fits of the DNM to these data 
and those collected by Balakrishnan (1998a) and Van Zandt 
(2000)—suggest that decision noise needs to be acknowl-
edged as a primary source of noise in signal detection.

Confidence ROC Functions Can Change Shape
According to classic SDT, the perceptual distributions 

of the signal and noise trials form a regime under which a 
decision rule operates. These distributions are determined 
by the stimulus and the perceptual system, but are other-
wise relatively fixed. In contrast, the observer has strategic 
control over the decision criterion, which may be placed at 
an optimal position in order to maximize accuracy or pay-
off. A single observer might adopt a very strict criterion 
in some situations, producing very few false alarms but 
also few hits; in other situations, the criterion may be lax, 
producing many hits but also many false alarms. Because 
the criterion is under strategic control, the observer might 
use a suboptimal strategy, either moving the criterion to 
an inappropriate location, or even placing the criterion 
at a different location on each trial. Standard SDT statis-
tics can easily deal with nonoptimal placement of a static 
criterion, but a nonstatic response criterion introduces 
noise that is attributed to perceptual rather than to deci-
sion processes. This represents a potential weakness of the 
model, or at least the derived statistics d ′ (sensitivity) and 
β (bias), which assume a fixed decision criterion.

ROC functions are sometimes measured to verify 
whether the assumptions of SDT are valid. To do this, the 
experimenter manipulates instructions, base rates, or pay-
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Figure 1. Two confidence ROC (C-ROC) functions based on 
data from the mixed successive condition of Balakrishnan (1998a) 
for equally likely signal and noise trials versus rare signal trials. 
The points on each C-ROC show the hit and false alarm rates for 
each of the 14 confidence levels (7 for each response). The func-
tions cross one another, apparently violating the assumption of 
SDT that such manipulations affect only the decision criterion. 
For comparison, a normal ROC function with a d ′ of 1.5 is plot-
ted as well. The length of the lines connecting ROC points to the 
y 5 x diagonal are proportional to values of the UR(k) functions 
for each condition.
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In fact, each C-ROC function in Figure 1 appears to be 
well approximated by a two-piece linear function from (0,0) 
to (1, 1) through the middle confidence point corresponding 
to the classification criterion. A bilinear function like this 
would be obtained if confidence ratings within each clas-
sification category were simply randomly assigned with-
out regard to any internal level of evidence. Thus, different 
levels of classification and confidence noise entering into 
the decision process may produce the puzzling results that 
were noted by Balakrishnan (1998a, 1999), even if all other 
assumptions of SDT were correct. We will examine this pos-
sibility in greater detail below, but first we will turn to a 
related finding that also poses problems for SDT.

Lack of Evidence for Criterion Change
Balakrishnan (1998b) introduced several new statistics 

that allow better tests of criterion shifts of the type assumed 
by SDT. In this context, he proposed a function—UR(k)— 
that measures the divergence between the cumulative den-
sity functions for the signal and noise distributions esti-
mated at the transitions (k) between confidence responses. 
For each point on a C-ROC function, the associated UR(k) 
value is proportional to the distance between that point 
and the diagonal line y 5 x along a vector with slope 21 
(see Figure 1).4 Because of this correspondence, UR(k) is 
closely related to the area under the ROC function, which 
is commonly used as an index of sensitivity. Balakrishnan 
(1998b) showed that if the decision criterion changes, the 
peak of the UR(k) function should move away from the 
central confidence point. If the C-ROC functions had fol-
lowed the d ′ 5 1.5 ROC contour but the confidence points 
had shifted along the contour, then the peak of the UR(k) 
function would have shifted as well. Despite the fact that 
the ROC functions differed between conditions, the peak 
of the UR(k) functions did not change; that is, it is always 
located at the central confidence point.

Balakrishnan and MacDonald (2002) noted that across 
a wide range of data, the peak of the UR(k) function rarely 
changed in response to manipulations that affected β. This 
result suggests that decision criteria do not actually shift po-
sition in the way assumed by SDT. Balakrishnan and Mac-
Donald suggested that the decision criterion may remain 
fixed at an equal-likelihood point for the two distributions, 
whereas the variances (and/or shapes) of the signal and noise 
distributions may change in response to manipulations of 
payoff and base rate. For example, in a classic signal detec-
tion task, the variance of perceptual states produced during 
signal trials may be smaller than the variance of those pro-
duced during noise trials in a condition in which the signal 
occurs often. As noted by Balakrishnan and MacDonald, 
these types of changes in perceptual distributions are incom-
patible with SDT, but are natural consequences of a class of 
sequential sampling models.

Treisman (2002) noted several objections to these argu-
ments, and Balakrishnan and MacDonald (2002) defended 
their utility. However, the arguments centered on the differ-
ent ways in which a set of deterministic response criteria 
might interact to produce the observed results. In our assess-
ment, the analyses by Balakrishnan (1998a, 1998b, 1999) 

in Figure 1, the C-ROC functions he obtained differed sub-
stantially, apparently violating the assumption of SDT that 
manipulations of base rate affect only the decision criterion 
and not the shape of the perceptual distributions. Similar 
results have been obtained in other conditions and by other 
experimenters (see, e.g., Van Zandt, 2000).

We hypothesize that this violation of SDT may stem 
from the confidence rating procedure itself. Examining 
Figure 1, we find that not only do the C-ROC functions 
cross, but they each have a noticeable peak at or near the 
middle confidence point.2 This point corresponds to the 
overall hit/false alarm rate for that condition if confidences 
were aggregated into just two responses using the middle 
confidence point. These central points can also be used to 
compute β for this experiment, and, for the rare signal con-
dition, β moves in the direction expected if the observer 
placed a criterion in order to improve accuracy in response 
to a base rate manipulation. Furthermore, both peaks fall 
on the normal ROC function, with d ′ 5 1.5. Consequently, 
if only the two-category classification responses were ana-
lyzed, this experiment would seem to support SDT: Under 
two different base rates, approximately equal sensitivity 
was observed, along with an appropriate change in deci-
sion criterion. The violations appear when we consider the 
confidence data. According to SDT, the C-ROC functions 
should have followed the same normal ROC contour in both 
conditions. This failure to conform to the assumptions of 
SDT may indicate that the underlying decision model is 
misspecified. However, it also may indicate that confidence 
ratings distort the evidence distribution and are therefore in-
appropriate for making conclusions about these perceptual 
distributions or decision processes that operate on them.

Noise in Signal Detection
As described previously, in SDT, it is assumed that 

stimuli give rise to noisy percepts. This uncertainty in 
the mapping of external stimuli to internal perceptual 
states is called perceptual noise, and it is the only source 
of noise considered in classical SDT. As perceptual noise 
increases, accuracy decreases. As accuracy decreases, the 
ROC function approaches the diagonal line y 5 x, which 
represents response states that do not discriminate signal 
from noise trials.

Noise might also be introduced in the mapping between 
the internal perceptual state and the response. Although 
this decision noise is typically not addressed in classic 
SDT, it clearly might exist and may have an impact on 
both binary stimulus classification and confidence assess-
ment. In fact, peaked ROC functions—like the one shown 
in Figure 1—could occur if the noise in the mapping from 
perceptual evidence to confidence responses (henceforth 
called confidence noise) is relatively larger than that in the 
mapping from perceptual evidence to the binary response 
class (henceforth called classification noise). In the pres-
ence of decision noise, points on the C-ROC function are 
a mixture of multiple points on a latent perceptual ROC 
function and thus lie below the ROC function that would 
be formed if deterministic decision criteria were kept con-
stant within an experimental condition.3
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or confidence responses. Consequently, we are especially 
interested in developing both a model in which decision 
noise alone can account for the findings and a method to 
assess the role of decision noise in signal detection tasks 
with confidence ratings.

In our model, the nominal stimulus is a categorical vari-
able describing the stimulus class. The actual distal stimu-
lus presented to the observer may be a noisy exemplar from 
a stimulus class or a pure stimulus prototype presented in 
noise, so that even an ideal observer may be unable to attain 
perfect accuracy. When presented, the observer’s percept 
may be a noisy function of the distal stimulus (as in SDT). 
Additionally, we will allow this function to differ for differ-
ent stimulus classes in order to investigate the possibility 
that asymmetric C-ROC functions occur because of changes 
in the shape of the perceptual distributions. Finally, we as-
sume that there is decision noise—a probabilistic mapping 
from percept onto response—so that even identical percepts 
may lead to different responses on different occasions. As 
described above, we distinguish between two components 
of decision noise: classification noise (noise in the assign-
ment of a categorical response) and confidence noise (noise 
in the assignment of a confidence level).

Mapping From Distal Stimulus to Percept
We refer to internal noise that distorts the representation 

of the distal stimulus as perceptual noise and to the result-
ing distribution of perceptual states as the perceptual distri-
bution. Traditionally, d ′ is attributed to the combined effect 
of external and perceptual noise, both of which affect the 
perceptual distributions. In addition, in SDT, it is typically 
assumed that signal and noise trials produce perceptual 
distributions with the same variance, and that these distri-
butions do not change in response to base rate manipula-
tions. However, Balakrishnan and MacDonald (2002) sug-
gested that the observed crossover in ROC functions (see 
Figure 1) could stem from perceptual distributions that 
changed shape in response to manipulations of base rate or 
payoff. Consequently, we allow such changes to occur.

Mapping From Percept to Response
Decision noise is not consistent with a static decision 

criterion typically assumed in SDT, and the presence of 
decision noise would allow two identical internal percepts 
to produce different responses on different occasions. De-
cision noise has frequently been ignored because it often 
cannot be separated from perceptual noise and is simply 
incorporated into d ′, underestimating the level of percep-
tual sensitivity. There are many ways decision noise could 
be conceptualized (see Mueller, 1998, for a review). Some 
theorists have suggested that the decision criterion drifts 
along a sensory continuum from trial to trial, perhaps in 
response to error feedback (see, e.g., Kac, 1969). Others 
have suggested that decision criteria are sampled from a 
distribution on each trial (e.g., Erev, 1998), and still oth-
ers have suggested that the observer learns a probabilistic 
function mapping sensory evidence onto the response (e.g., 
Schoeffler, 1965). Exactly how noise enters into the deci-
sion process is not important for our argument; thus, we as-

present substantial challenges for SDT and are not just com-
plications caused by degenerate criterion placement, as was 
suggested by Treisman. However, we hypothesize that the 
apparent violations of SDT may stem from decision noise 
and, specifically, probabilistic response processes associ-
ated with confidence ratings. As we discussed previously, 
if the uncertainty involved in rating confidence (i.e., confi-
dence noise) is relatively greater than the uncertainty in de-
termining an overall classification category (i.e., classifica-
tion noise), then the C-ROC function [and associated UR(k) 
functions] will be peaked at the point between the two clas-
sification categories. The central peak in the UR(k) function 
produced by this confidence noise could hide a shift in the 
function’s peak that would otherwise result from a criterion 
shift. Thus, the apparent violations of SDT may not reflect 
fundamental misrepresentations of the classic SDT, but in-
stead reflect inappropriate assumptions about how humans 
determine their confidence responses. In order to evaluate 
this possibility, we will next describe a new extension of 
SDT that incorporates decision noise and allows confidence 
noise and classification noise to vary independently.

The Decision Noise Model (DNM) 
A Signal Detection Model With Response 

Uncertainty

We hypothesize that Balakrishnan’s (1998a, 1999) find-
ings can be explained by noise entering into the decision 
process. In order to investigate this possibility, we have de-
veloped an extension of SDT that we call the DNM. This 
model incorporates both perceptual noise and decision 
noise, with independent contributions from classification 
and confidence noise. We use this model not as a replace-
ment for SDT (and do not create new measures of sensi-
tivity and bias based on it), but as an extension of clas-
sic SDT that can illustrate how different sources of noise 
may affect measurable statistics. This model incorporates 
confidence ratings and encapsulates aspects of decision 
uncertainty present in numerous previous models (see, 
e.g., Busemeyer & Myung, 1992; Erev, 1998; Kac, 1969; 
Schoeffler, 1965; Treisman & Williams, 1984), but does 
so at a level that does not incorporate learning and other 
trial-by-trial dynamics present in many of these previous 
models. This simplification allows us to evaluate the role 
of decision noise in general, independent of the specific 
assumptions of these theories (i.e., learning scheme, re-
sponse mapping, criterion sampling/drift, etc.). We pre
sent an overview of the DNM next and a more detailed 
formal presentation in Appendix A.

Before we describe the model in greater detail, a dis-
cussion about one of its fundamental assumptions is nec-
essary. Balakrishnan and MacDonald (2002) argued that 
the data we have described support a sequential sampling 
model. However, in this article, we will show that deci-
sion noise is also a reasonable explanation. Indeed, this is 
a false dichotomy: Reasonable models could be formed 
that produce an internal perceptual state using a sequential 
sampling process, but that still introduce decision noise in 
the mapping between this internal state and classification 
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from normal distributions (by default with equal variance 
and means that are free parameters). In order to produce a 
confidence response, the model first examines the central 
classification criterion, and, depending on which side of 
the classification criterion the percept falls on, it samples 
the least confident confidence criterion in the proper di-
rection. This conditional sampling continues until either 
a sampled criterion is found to be more extreme than the 
perceptual evidence, or no confidence regions remain. The 

sumed (for convenience) that on each trial, a classification 
criterion is sampled from a normal distribution and that a 
response class is determined on the basis of comparing the 
sampled percept to the sampled criterion. In order to pro-
duce a confidence rating, a similar process occurs within 
each response class. For an eight-level confidence scale 
in which four confidence classes occur for each response 
class, three criteria per response class are required. On each 
trial, positions of these confidence criteria are selected 
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Figure 2. Depiction of the probabilistic mappings from percept onto confidence 
responses. For any specific level of perceptual evidence, the vertical distance between 
two lines represents the probability of producing each confidence rating. Classifica-
tion noise is kept constant for the three panels (see the thick line), whereas confidence 
noise increases from the top to the bottom panel. The mean classification criterion was 
placed at 0, whereas means of the confidence criteria were 62, 64, and 66.
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tion criterion was drawn from a normal distribution with 
a mean of 0 and a standard deviation of 1. Confidence cri-
teria had means of 62, 64, and 66, and standard devia-
tions of either 1, 2, or 4 (depending on condition). These 
three conditions correspond to the three panels shown in 
Figure 2. For each condition, we examined both positive 
and negative criterion shifts by adding or subtracting 2 to 
the above criteria means.

Figure 3 shows how peaked and crossing C-ROC func-
tions can be obtained if confidence noise is greater than 
classification noise. With equal levels of confidence and 
classification noise (left panel), two completely over-
lapping C-ROC functions are produced in response to 
criterion shifts. In this case, observed C-ROC functions 
lie along the same contour; thus, they cannot be used to 
discriminate between perceptual and decision noise. The 
middle and right panels show the obtained C-ROC func-
tions as confidence noise increases with respect to the 
classification noise. As the ratio of classification noise 
to confidence noise changes from 1:1 to 1:4, peaked and 
crossing C-ROC functions emerge.

Although the distortions of the C-ROC function may 
be explained by decision noise, Balakrishnan’s (1998a) 
measures of criterion shift may still be able to detect true 
shifts masked by decision noise. Consequently, we com-
puted UR(k) functions on the simulated data (shown in 
Figure 4), examining three ratios of decision noise (one 
per panel) and considering three criterion shifts: no shift, 
a small shift (1 unit), and a large shift (2 units).

The UR(k) function can be used to detect criterion shifts 
by determining the criterion (k) at which the function peaks. 
Unshifted response policies should peak at k 5 4 in our ex-
ample. Results show that when decision noise is relatively 
small, true shifts in decision criterion can be detected using 
the UR(k) measure. However, with increases in confidence 
noise with respect to classification noise, these shifts be-
come harder to detect. For the moderate confidence noise 
condition, the large shift can be detected, but the smaller 
shift produces estimates of UR(k) that are about equal for 

confidence response is based on the position of the percept 
in relation to these sampled confidence criteria.5

Figure 2 shows three sets of response policies pro-
duced by the DNM that map percepts onto responses. 
Each panel shows a specific response policy determined 
by the mean and standard deviations of the decision cri-
teria. For any specific level of perceptual evidence, the 
vertical distance between two adjacent functions indi-
cates the probability of producing a specific confidence 
response. The top panel of Figure 2 shows a response 
policy in which the classification and confidence criteria 
have equal standard deviations (i.e., classification and 
confidence noise are equal); the middle panel shows a 
response policy in which the standard deviations of the 
confidence criteria are twice as large as that for the classi-
fication criterion, and the bottom panel shows a response 
policy in which the standard deviations for the confidence 
criteria are four times as large as that for the classification 
criterion. By comparing the three panels, one can see that 
confidence noise can be manipulated while maintaining 
the same level of classification noise (represented by the 
thick black line).

Using the DNM described so far, we can simulate data 
from signal detection tasks and examine the effects that 
unequal classification and confidence noise have on the 
resultant ROC and UR(k) functions. Doing so enables us to 
determine whether true criterion shifts could be detected 
in the presence of decision noise and the extent to which 
the proposed model can explain the observed crossover in 
the ROC functions (see Figure 1).

Predictions of the DNM
In order to show that decision noise can account for 

the crossover ROC functions, we performed a simulation 
with two normal stimulus distributions (A and B), with 
means of 22 and 12, and a standard deviation of 1 (sim-
ulating external noise). Furthermore, perception added 
normally distributed noise with a standard deviation of 2. 
Responses were formed by assuming that the classifica-
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Figure 3. As confidence noise in the decision noise model increases relative to the constant classification noise, asymmetric C-ROC 
functions emerge. The left panel shows the equal noise condition, the center panel shows C-ROC functions with 1:2 ratios of criterion 
sampling standard deviation, and the rightmost panel shows C-ROC functions with 1:4 ratios.
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observed suboptimalities in responding, which provide 
additional evidence against criterion shifts. These subop-
timalities manifested themselves as low confidence A re-
sponses that were given more often in response to B stimuli 
than to A stimuli (or vice versa). This result indicates a 
suboptimal decision rule, because a movement of the deci-
sion criteria to optimal locations would eliminate such sub-
optimalities. As Treisman (2002) pointed out, the below-

the third and fourth criterion. As noise increases more, the 
small shift becomes undetectable, whereas the larger shift 
becomes ambiguous. This simulation demonstrates that if 
confidence noise is greater than classification noise, then 
a peak in the UR(k) function can appear at the medial con-
fidence point, even if the decision criteria shift.

In addition to finding no measurable shift in the peaks 
of the UR(k) function, Balakrishnan (1998a, 1998b, 1999) 
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of the function UR(k) disappears, possibly explaining the fact that such shifts are rarely found in empirical data, despite changes in β.
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then perceived by the observer, who produces a response. 
Along with a classification response of the observer, re-
cordings can be made of the distal (presented) stimulus, 
activation levels or firing rates in the neural tissue of the 
observer, or response-related variables, such as response 
time (RT) or subjective confidence level. ROC functions 
can be computed by pairing a binary classification vari-
able (e.g., stimulus or response category) with a multilevel 
ordinal-scale variable (e.g., firing rate or confidence).

Two classes of ROC functions computable from neural 
recording data were defined by Zhang et al. (1997): the 
stimulus-related and response-related ROC functions. We 
will first discuss stimulus-related ROC functions, which 
are commonly used to make inferences about the shapes 
and the variances of the perceptual distributions. Then, 
we will show how response-related ROC functions can be 
constructed to make inferences about the mapping from 
perception to response.

Stimulus-related ROC functions. A commonly 
used stimulus-related ROC function is the confidence-
based ROC (C-ROC) function, which is computed by 
calculating hit rate and false alarm rate for each transi-
tion between confidence states. The steps involved in con-
structing a stimulus-related C-ROC function are shown in 
the top row of Figure 7, and a detailed example is given 
in Appendix B. First, one administers a signal detection 
task experiment, collecting confidence ratings. The data 
are divided into two classes: signal trials and noise trials, 
and confidence rating distributions are formed for each 
class (leftmost panel). These empirical distributions are 
typically taken as estimates of the underlying signal and 
noise distributions, although decision noise can distort 
this relationship. Next, one computes the cumulative den-
sity function of the signal and noise distributions (center 
panel). The function UR(k) is computed by taking the dif-
ference between these two functions, and the ROC func-
tion is computed by plotting the cumulative distribution 
function (subtracted from 1.0) of the signal and noise dis-
tributions against one another, for all transitions between 
confidence responses (rightmost panel). In this figure, we 
plot these functions as smooth lines, even though they are 
empirically derived from dozens of discrete points along 
the cumulative density functions (we will do the same in 
later figures whenever more than eight points contribute 
to a function). The shape of the resulting C-ROC func-
tion is determined by the shape of the perceptual distribu-
tions and response policies. For chance performance, the 
C-ROC function approximates the main diagonal. To the 
extent that the observer is able to discriminate between 
signal and noise trials, the C-ROC function becomes con-
vex. Therefore, the area under the C-ROC function can be 
used as a measure of the relationship between stimulus 
class and confidence: The upper bound on the area under 
the ROC function is 1.0, and chance performance corre-
sponds to an area of .5. In the example, the signal distribu-
tion has less variability than the noise distribution; thus, 
the obtained ROC function is not symmetric around the 
negative diagonal.

Other measures besides confidence have been used to 
form stimulus-related ROC functions. These include RTs 

chance response accuracies for low confidence responses 
observed by Balakrishnan do not necessarily imply that 
the criterion has not changed at all; the shift may have just 
been smaller than optimal (see also Green & Swets, 1966, 
pp. 90–92; Healy & Kubovy, 1981). In our simulations of 
the DNM, we explored whether such a conservative shift 
can explain these suboptimalities even in the presence of 
decision noise. Just as is found in human data, the DNM 
should be able to produce results in which suboptimalities 
can be detected, but criterion shifts cannot.

Figure 5 shows simulated functions produced by the 
DNM for a base rate signal probability of .2. In each panel 
(representing increasing levels of confidence noise), over-
all accuracy for each confidence response is plotted. An 
optimal criterion shift would move all responses above .5; 
however, for the conservative criterion shifts simulated 
by the DNM, suboptimalities are detected in each of the 
decision noise conditions, despite the fact that the UR(k) 
functions in Figure 4 do not always reveal criterion shifts. 
This result demonstrates that it is, in principle, possible 
for decision noise to mask shifts in the criterion and pro-
duce suboptimal responding.

These simulations show how the findings of Balakrish-
nan (1998a, 1998b, 1999) can be explained in terms of 
decision noise. However, as was pointed out by Balakrish-
nan (2002), the peaked and shifted ROC functions and 
corresponding UR(k) functions could also have stemmed 
from changes in the perceptual distributions. In order to 
help distinguish between these two explanations, we will 
use a technique in which we add external noise to the stim-
uli and examine the relationship between distal stimulus 
and response category. In the next section, we provide the 
theoretical grounding for different types of ROC functions 
that help in making this distinction.

ROC Functions
In classic SDT, it is typically assumed that the perceptual 

distributions are normally distributed. The validity of this 
assumption for a specific data set is rarely tested, although 
some evidence for its validity can be obtained by examining 
an ROC function. Ideally, an ROC function is formed by 
manipulating the observer’s classification criterion across 
many different conditions. However, this is data intensive 
and time consuming, because it requires testing under 
numerous base rate or payoff conditions. Consequently, 
researchers often use a more efficient method based on 
confidence ratings. Doing so allows an ROC function to be 
computed for a single experimental condition.6

Following Zhang, Riehle, and Requin (1997), in this sec-
tion we will review different types of these single-condition 
ROC functions that can be used to make inferences about 
the underlying processes involved in a signal detection 
task. In particular, we will distinguish between stimulus-
related and response-related ROC functions. Figure  6 
schematically depicts the different sources of data that may 
be available during a signal detection task. In the diagram, 
binary categorical variables are represented by rectangles, 
whereas multilevel ordinal-scale variables are represented 
by ovals. The central flowchart shows how a nominal stim-
ulus is selected and a distal stimulus is produced, which is 
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Figure 6. Schematic diagram of data sources available for measurement during the signal detection task. Binary categori-
cal variables are shown as rectangles; multilevel ordinal-scale variables are shown as ovals. ROC functions can be formed by 
examining an ordinal-scale variable conditioned on a categorical variable.
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Figure 7. Steps in the construction of stimulus-related and response-related ROC functions. First (left panels), trials are sorted into 
two categories (either by stimulus or response class), and relative frequency histograms ( f [x]) are formed representing the distribu-
tions over a secondary variable x (such as the firing rate of neurons or confidence estimates). These histograms are converted to cu-
mulative frequency distributions (F[x], middle panels), and the corresponding cumulative frequencies are plotted against one another 
for every possible criterion k, along the secondary variable x, forming the corresponding ROC functions (right panels). A worked-out 
example of this process is given in Appendix B.
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This function does not map out accuracy directly, 
because no information about the stimulus category is 
used. Instead, it maps out the relationship between the 
categorical “yes” or “no” responses and the underlying 
firing distributions of a neuron. Therefore, just as tradi-
tional stimulus-related ROC functions effectively answer 
the question, “If confidence level k had been used as the 
classification criterion, what would accuracy have been 
for each stimulus class?” response-related ROC functions 
effectively answer the question “If firing rate k were the 
objective division between the two stimulus classes, what 
would accuracy have been for each response class?” Thus, 
in contrast to the typical stimulus-related ROC functions, 
which plot the proportion of hypothetical “yes” responses 
for the two stimulus classes, response-related ROC func-
tions plot the proportion of hypothetical signal trials for 
“yes” responses against those for “no” responses.

Although originally defined to examine the relationship 
between a firing neuron and an overt response, the same 
computation can be performed on any multivalue ordinal-
scale variable to determine the relationship between that 
variable and the categorical response. Philiastides and 
Sajda (2006), for example, related neural components ob-
tained from scalp EEG recordings to responses. Another 
example is the response-related ROC function based on 
the (noisy) distal stimulus. This function measures the 
relationship between the presented stimulus intensity 
and the response by evaluating the cumulative predictive 
sensitivity along all the presented intensities. We refer to 
this as the distal stimulus ROC (DS-ROC) function, or the 
response-related DS-ROC when the meaning is ambigu-
ous. We present a sample calculation of C-ROC and DS-
ROC functions in Appendix B.

The DS-ROC can be useful, because it measures the 
relationship between the stimulus and the classification 
response across a range of stimulus values without making 
use of confidence ratings. Thus, if the DS-ROC shows the 
asymmetries observed in the C-ROC functions, then we 
can infer that at least part of the asymmetry stems from 
processes prior to confidence assessment and in the map-
ping from distal stimulus to percept. However, if only the 
C-ROC functions show the asymmetry, then we can isolate 
the asymmetry to processes that occur in the mapping from 
percept to confidence response. Thus, we may be able to 
use DS-ROC functions to distinguish between two alterna-
tive accounts of the crossover in the C-ROC functions.

The previous simulations showed how—when deci-
sion noise was large—the DNM produced data in which 
C-ROC functions crossed, and for which the UR(k) and 
suboptimality functions could not detect true shifts in a 
decision criterion. We will next present simulations that 
show how C-ROC and DS-ROC functions respond to 
changes in perceptual distributions and decision policies. 
We simulated C-ROC and DS-ROC functions for four 
variations of the DNM, factorially manipulating base-rate 
dependent perceptual noise and the ratio of the noise as-
sociated with the classification and confidence criteria 
(shown in Figure 8). These simulations were identical to 
the previous ones, except that we only considered two ra-

and neural recordings (see, e.g., Newsome, Britten, & 
Movshon, 1989; Zhang et al., 1997), which have been used 
to examine the discriminability of individual cells in a mon-
key cortex during perceptual-motor tasks. Other factors can 
be used as well, including neural activity in a brain imag-
ing context, skin conductance, pupil dilation, and even data 
from the environment (such as properties of the stimulus or 
ambient noise). These ROC functions will only reveal as-
pects of an observer’s sensitivity if the dependent measure 
is related to the observer’s ability to discriminate between 
the stimulus classes. If there is no relationship, then the re-
sulting ROC function will approximate the line y 5 x.

Even though stimulus-related ROC functions based on 
properties of the environment provide no information about 
the observer, some can still be useful. For example, suppose 
that a stimulus is presented in noise so that it is impossible 
to perfectly discriminate signal trials from noise trials. If 
one uses an independent measure of the intensity of the dis-
tal stimulus to form a stimulus-related ROC function (we 
call this a stimulus-related distal stimulus ROC function, 
or stimulus-related DS-ROC for short), then the function 
traces out an upper bound on the accuracy that could be at-
tained in that experiment. Similar procedures that introduce 
external noise have a long tradition in the investigation of 
decision rules in SDT (see, e.g., Kubovy & Healy, 1977; 
Lee, 1963; Lee & Janke, 1964; Lee & Zentall, 1966), and 
such techniques have been adopted more recently to inves-
tigate attentional mechanisms (Lu & Dosher, 1998) and to 
identify features that humans are using in visual perception 
tasks (Gold, Murray, Bennett, & Sekuler, 2000). Despite the 
limited insights that a stimulus-related DS-ROC function 
can provide, a similar function computed on the response 
classes can be useful and reveal the relationship between 
the stimulus and response category. We will discuss such 
response-related ROC functions next.

Response-related ROC functions. Zhang et  al. 
(1997) demonstrated how the functional locus of a cell 
along the perception–decision–response continuum can 
be isolated by forming response-related ROC functions 
in addition to the stimulus-related ROC functions dis-
cussed previously. The lower panels of Figure 7 show 
how a response-related ROC function can be computed 
by examining the response class in comparison with a 
secondary variable. As an illustrative example, consider 
a yes–no categorical decision in which the neural firing 
rate of some area of cortex is recorded on each trial. First, 
the data are sorted into two classes corresponding to “yes” 
and “no” responses, and distributions of neural firing rate 
are computed for each response class (left panel). Next, 
the cumulative density functions for these two distribu-
tions are formed (center panel). Finally, for each firing 
rate, the cumulative densities for “yes” and “no” responses 
are subtracted from 1.0 and plotted against one another 
to form the response-related ROC function (rightmost 
panel). This function shows the relationship between the 
measured variable and the categorical response. As in the 
stimulus-related ROC function, if the measured variable is 
unrelated to the measured response, then the function will 
approximate the line y 5 x.
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Figure 8. Predictions of the decision noise model for different sources of noise. 
Differences in the perceptual distribution variance that depend on base rate/payoff 
produce crossover DS-ROC and C-ROC functions. If true criterion shifts exist, then 
crossover C-ROC functions will be obtained if the variances of the confidence criteria 
are larger than the variance of the medial classification criterion.
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so enabled us to form DS-ROC functions that were based 
on actual stimulus intensities and to demonstrate the abil-
ity of the DNM to fit these data.

Method
Participants. Participants were 49 undergraduate students from 

Indiana University who received partial completion of course credit 
in exchange for their involvement in the experiment.

Procedure. Each participant took part in a single experimental 
session that lasted less than an hour. Participants sat in a private dimly 
lit booth approximately 30 cm from a 17-in. CRT display screen, 
which was attached to a desktop PC and set to a resolution of 800 3 
600. Stimulus presentation and response collection was performed 
using a custom-written experiment script managed by the PEBL Ver-
sion 0.05 experiment language interpreter (Mueller, 2005). Stimuli 
were presented in 12-point Bitstream Vera Mono typeface.

On each trial, participants were shown a 10 3 10 character grid 
that contained randomly distributed “*” symbols. Their task was 
to determine which category the stimulus came from: “A” (which 
contained, on average, 46 symbols) or “B” (which contained, on 
average, 54 symbols). The actual number of symbols on each trial 
was determined by sampling from a normal distribution whose 
mean depended on the stimulus class and whose standard deviation 
was 5. Participants performed 24 blocks of this task under different 
base rate and response conditions. For half of the blocks, partici-
pants responded either “A” or “B” by pressing one of two keys on 
the keyboard (the “Z” and “/” keys); the other blocks involved a 
confidence rating task in which participants were instructed to give 
a rating of 1, 2, 3, or 4 to indicate A stimuli and 7, 8, 9, or 0 to in-
dicate B stimuli (by pressing the corresponding number keys along 
the top of the keyboard). In the confidence task, ratings given with 
the index fingers (4 and 7) indicated low-confidence responses, 
and responses given with the little fingers (1 and 0) indicated high-
confidence responses. Blocks of stimuli were presented under 
three different base rate ratios: 2:1, 1:1, and 1:2. Payoff regimens 
were designed to encourage the use of high-confidence responses 
only when participants were very certain of their classifications: 
In order from least confident to most confident, rewards of 1, 2, 
3, or 4 points and losses of 1, 3, 5, and 7 points were given. All 
blocks from each base rate were contiguous, and, within each base 
rate condition, the confidence and forced-choice task alternated. 
In contrast with the experiments reported by Balakrishnan (1998a) 
in which targets appeared on approximately 10% of trials, our base 
rate manipulations were fairly small (i.e., 2:1 and 1:2). These were 
chosen to allow for a substantial number of trials in the low base 
rate condition while keeping the duration of the experiment under 
1 h, because experiments with extremely rare stimuli can be con-
taminated by effects stemming from attentional lapses and the fail-
ure to maintain vigilance (see, e.g., Loh, Lamond, Dorian, Roach, 
& Dawson, 2004). In total, four 60-trial blocks were presented for 
each task and each base rate condition, for a total of 1,440 trials 
per observer.

Initial data processing. Although a point-based payoff was used 
in the task, no monetary reward was given, so we anticipated that 
some participants would not be engaged in the task or would other-
wise fail to perform according to instructions. An initial examination 
of individual participants’ data showed that 6 participants scored sub-
stantially fewer points than others or used primarily two confidence 
responses. As a result, only data from the 43 remaining participants 
were analyzed further. Our use of external noise creates ambiguity in 
the stimulus class designation, because the nominal stimulus class 
(by which base rate varied and upon which feedback was given) was 
impossible to discriminate perfectly. However, even when a stimulus 
nominally arose from one distribution, it may have been more likely 
to have come from the other distribution. Thus, we computed all 
statistics that required specifying stimulus class (e.g., hit rate, false 
alarm rate, etc.) on the basis of the ideal stimulus category for each 
distal stimulus: Stimuli with fewer than 50 symbols were designated 

tios of classification and confidence noise: 1:1 and 1:4. 
Furthermore, we considered two perceptual noise regimes: 
one in which signal and noise distributions had equal vari-
ance (i.e., equal perceptual noise), and one in which the 
ratio between noise and signal standard deviations was 2:3 
for positive criterion shifts and 3:2 for negative criterion 
shifts (i.e., unequal perceptual noise). The DS-ROC was 
formed using the simulated stimulus intensity. Each panel 
shows two ROC functions corresponding to positive and 
negative shifts in the response policy (as is often assumed 
to occur with changes in base rate or payoff). In all cases, 
the SDT statistic β was sensitive to these shifts.

Panel A of Figure 8 shows simulated DS-ROC and 
C-ROC functions with equal perceptual noise (i.e., the 
variance of the signal and noise distributions were the 
same and did not depend on condition) and equal deci-
sion noise (i.e., the variance of the classification criterion 
was the same as the variance of the confidence criteria). 
ROC functions for the two criterion shift conditions lie 
on top of one another, producing results indistinguish-
able from those expected by classic SDT. This occurs 
even though decision noise is present, and, in a typical 
analysis, this noise would have been incorporated into 
the overall estimate of sensitivity. Panel B shows simu-
lated ROC functions with equal variance for signal and 
noise distributions, but confidence noise that was greater 
than classification noise. Here, asymmetries are observed 
for only the C-ROC function, because the source of the 
asymmetry is in the decision process. Data showing this 
pattern are especially diagnostic, because they imply that 
the asymmetries arise during decision rather than during 
perceptual processes. Panel C shows the effect when only 
the variance of the perceptual distributions differ (i.e., the 
variance of signal and noise distributions depend on base 
rate): It produces the crossover in the DS-ROC functions, 
and this crossover carries over to the C-ROC functions. 
Finally, combining the two sources (panel D) shows asym-
metries in both ROC functions as well. Results such as 
those in panels C and D are not easily distinguishable, and 
if empirical data show crossovers for both DS-ROC and 
C-ROC functions, then it would be difficult to determine 
the contribution of decision noise to the effect.

The demonstration in Figure 8 shows that if the percep-
tual distributions change shape in response to base rate 
manipulations, then both the DS-ROC and the C-ROC 
functions change shape. In contrast, if the mapping be-
tween percept and response becomes uncertain because of 
decision noise, then the C-ROC function changes shape, 
but the DS-ROC does not. In the next section, we will re-
port an experiment that we conducted to demonstrate how 
this type of analysis can be used to determine the source of 
the crossover C-ROC functions discussed earlier.

Experiment 
The Effects of Perceptual and Decision Noise

In order to demonstrate how the locus of asymmetries in 
an experiment can be identified, we conducted a stimulus 
classification experiment involving external noise. Doing 
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to determine whether the slopes of the functions depend 
on base rate condition. The pooled ROC functions from 
our data set were essentially linear when transformed into 
z coordinates (i.e., the corresponding values of the stan-
dard normal distribution), although the C-ROC functions 
tended to have a small discontinuity at the transition be-
tween “A” and “B” responses. Consequently, in order to 
determine whether base rate condition had an effect on 
the shape of the ROC functions, we computed the slope 
of the z-transformed ROC functions for each participant. 
We then examined the mean z-transformed C-ROC and 
DS-ROC function slopes for the forced choice and con-
fidence rating conditions of the experiment. Mean slopes 
for the C-ROC functions were 1.029, 0.934, and 0.906 
for the 2:1, 1:1, and 1:2 base rate conditions, respectively. 
An ANOVA treating participant as a randomized factor 
confirmed that these differences were reliable [F(2,82) 5 
5.57, MSe 5 0.031, p 5 .005],7 indicating that the C-ROC 
functions did indeed differ. In contrast, the slopes of the 
DS-ROC functions were not reliably affected by the base 
rate condition. For the confidence-rating procedure, mean 
z-transformed DS-ROC slopes were 1.01, 1.00, and 1.00 
for the 2:1, 1:1, and 1:2 base rate conditions, respectively, 
which were not reliably different [F(2,84) 5 0.08, MSe 5 
0.020, p 5 .92]. For the forced choice procedure, mean 
z-transformed DS-ROC slopes were 1.01, 1.02, and 1.02 
for the 2:1, 1:1, and 1:2 base rate conditions, respectively, 
which were also not reliably different [F(2,84) 5 0.019, 
MSe 5 0.02, p 5 .98]. These results support our hypoth-
esis that the violations of SDT that we observed stemmed 
from decision-related processes.

These results also suggest that confidence judgments 
are subject to more noise than are classification responses, 
and this decision-related noise may account for many em-
pirical violations of SDT. Such noise could stem from a 
number of sources, such as learning, forgetting, mainte-
nance of consistency, or response perseveration. Many of 
these accounts predict trial-by-trial dependencies, which 
we will examine next.

Response dependencies. Sequential dependencies 
between consecutive stimuli or responses have frequently 
been found in perception and detection tasks (Jones, Love, 
& Maddox, 2006; Parducci & Sandusky, 1965; Sandusky, 
1971; Treisman & Williams, 1984; Ward, 1973). Trial-by-
trial conditional effects could occur for a number of reasons, 
and they may be one important source of the decision noise 
found in our task. The conditional dependencies of differ-
ent responses are shown in Figure 10. In this figure, each 
panel represents a different base rate condition from our 
experiment. The size of the circle at each point in the grid 
is monotonically related to the number of total confidence 
ratings in that condition across the entire experiment.

Separate χ2 tests computed for each base rate condition 
showed that the dependency matrix deviated reliably from 
the null model (i.e., the hypothesis that the joint distribu-
tion of cell counts is the product of the row and column 
marginal distributions). Consequently, results showed 
reliable and strong trial-by-trial contingencies [χ2(49) 5 
2,559, 2,903, 2,853 for the conditions with more A stimuli, 

as A stimuli, and those with 50 or more symbols were designated as 
B stimuli. Finally, the first block of trials in each task and base rate 
condition (a total of six blocks) was considered practice and was not 
included in the analysis. In order to simplify the presentation of re-
sults, we will refer to the confidence responses made by pressing the 
7, 8, 9, and 0 keys as 5, 6, 7, and 8, respectively, so that the responses 
range from 1 to 8 with no gaps.

Results
SDT statistics. We began by computing the traditional 

SDT measure of d ′ and β for each participant. For the 
forced choice task, mean d ′ values were 0.85, 0.85, and 
0.92; and mean β values were 0.956, 1.065, and 1.19 for 
the 2:1, 1:1, and 1:2 base rate conditions, respectively. 
For the confidence ratings task, the corresponding mean 
d ′ values were 0.91, 0.88, and 0.97; the mean β values 
were 0.92, 1.02, and 1.12 for the 2:1, 1:1, and 1:2 base 
rate conditions, respectively. Individual estimates of β 
and d ′ were submitted to separate ANOVA procedures 
to determine the effects of base rate condition and test 
type, treating participant as a randomized factor. Results 
showed that neither base rate [F(2,84) 5 2.2, p . .1] nor 
test type [F(1,42) 5 1.8, p . .1] reliably affected d ′, al-
though both base rate [F(2,84) 5 35.8, p , .001] and test 
type [F(1,42) 5 71.5, p , .001] reliably affected β. The 
reliable shifts in β were in the directions expected by SDT 
in response to base rate manipulations; the reliable effect 
of test occurred because β values were slightly higher for 
all base rate conditions in the forced choice task than in 
the confidence ratings task.

ROC functions. Next, we calculated C-ROC and DS-
ROC functions from data pooled across participants. The 
C-ROC functions were formed for different base rate 
conditions of the confidence rating procedure. DS-ROC 
functions were formed from each base rate of the forced 
choice data as well as from each condition of the confi-
dence rating procedure, mapping confidence responses 
into two response categories: “A” and “B.” The DS-ROC 
was formed by computing the cumulative distributions 
across the number of presented stars in the display on each 
trial. The results are shown in Figure 9. The DS-ROC func-
tions were nearly identical for response conditions, indi-
cating that the confidence rating procedure did not affect 
the overall response category substantially. Furthermore, 
the DS-ROC functions were nearly identical for all base 
rate conditions, indicating that similar perceptual distribu-
tions occurred for each condition. However, we observed 
C-ROC functions that crossed, just as had been found pre-
viously by Balakrishnan (1998a, 1998b, 1999; see also 
our Figure 1). The changes in C-ROC functions that we 
observed are smaller than those shown in Figure 1, but it 
is important for one to keep in mind that our base rate ma-
nipulation (which was 1:2) was considerably weaker than 
that used by Balakrishnan (1998a; which was 1:9).

To test statistically whether two ROC functions dif-
fer is a challenge, because we are interested in whether 
the overall shape changes, independent of the positions 
of the individual confidence points. One way to do this 
is to transform the data into a space in which the func-
tions are linear and to use standard statistical techniques 
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confidence levels. Nonetheless, this provides a second 
important demonstration that suboptimalities in response 
processes are important contributors to performance in 
our task, and presumably in other tasks as well.

Criterion shifts. We also assessed our data using sev-
eral measures introduced by Balakrishnan (1998b). These 
results are shown in the top row of Figure 11, with error 
bars indicating 61 standard error. As we reported earlier, 
the traditional SDT measure β differed reliably across base 
rate conditions. Yet the peak of the UR(k) functions (left 
panel, top row) did not change in response to base rate, 
indicating no criterion shift. Next, we examined the prob-
ability of correct response for each confidence level (sec-
ond column, top row). Here, our results showed that par-

equal A and B stimuli, and more B stimuli, respectively; 
each p , .0001]. There is a strong tendency to repeat re-
sponses (the positive diagonal), with a lesser tendency to 
reflect to the corresponding confidence for the opposite 
response category (the negative diagonal). If no condi-
tional responses were occurring, then each column should 
have shown the same relative pattern, which clearly did 
not happen. Some of the repetition and reflection may 
stem from individual differences in response strategies, 
with some participants focusing, for example, on the two 
highest confidence ratings, and others focusing on the 
two lowest confidence ratings. However, similar patterns 
emerge when we restrict the analysis to just the partici-
pants who distributed their confidence responses over all 
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tal paradigms (visual detection, visual classification, and 
recognition memory).

In order to simulate data, we assumed that the means of 
confidence criteria were symmetric and fixed relative to the 
classification criterion, even when that criterion was shifted. 
We assumed that performance was affected by perceptual 
noise, classification noise (i.e., the variance of the classi-
fication criterion), and confidence noise (i.e., the variance 
of the other criteria). In practice, the obtained fits tended 
to minimize perceptual noise, so we eliminated perceptual 
noise for these simulations. This result probably does not 
indicate that there was no noise in stimulus perception, but 
it is likely to be a consequence of perceptual and decision 
noise trading off and therefore being difficult to separate.8

This model has a total of (n 2 1) 1 5 free parameters—
where n indicates the number of confidence states allot-
ted to each response category (in the present experiment, 
four)—and, because of the trade-off between variance 
sources, we use only (n 2 1) 1 4 of these, bringing the 
total number of free parameters in our experiment to seven. 
The fitted values and descriptions of these parameters are 
found in Table 1. Even the simplest extension of SDT to 
confidence responses would likely require (n 2 1) 1 3 
free parameters (i.e., n 2 1 confidence criteria, a central 
criterion, a shift in response to base rate, and a noise pa-
rameter); thus, our model adds either one or two param-
eters that control decision noise.

In order to simulate data, we estimated the perceptual 
distributions and decision policies numerically rather than 
via a Monte Carlo simulation of the entire perceptual pro-
cess. A detailed description of this approach is provided 
in Appendix A.

Application of the DNM to the  
Present Experiment

By adjusting the parameters of the DNM, we attempted 
to fit the following measures on data: (1) UR(k) func-
tions that do not detect shifts in criterion, (2) probability 

ticipants were, on average, above chance for all confidence 
responses, a result that is consistent with a criterion shift.

Balakrishnan (1998b) also introduced a distribution-
free measure of bias, Ω, which indexes the proportion of 
biased responses. As he pointed out, an upper bound on 
this measure can be computed on the basis of the response 
proportions for different confidence levels. In particular, 
low proportions of responses for the confidence levels 
flanking the peak of the UR(k) function correspond to a 
low upper bound of this bias index. In our experiment, a 
substantial proportion of responses fell into the low confi-
dence regions; therefore, we are unable to exclude the pos-
sibility that a sizable proportion of responses were biased, 
even though the peak of the UR(k) function of our data re-
mained in the central position for all base rate conditions. 
As we will show below, however, our model can account 
for the central peak in the UR(k) function, even when the 
upper bound of biased responses is low.

So far, our results have supported the decision noise 
hypothesis, demonstrating changes in β, C-ROC functions 
that cross without any effect on the DS-ROC functions, 
and substantial trial-by-trial response dependencies. If the 
model does provide a reasonable account of the processes 
involved in the signal detection task, then we should be 
able to provide precise quantitative fits to data as well. We 
will demonstrate such fits in the next section.

DNM Fits to Data

The DNM is designed as a simple extension of SDT 
to capture decision noise. It does not directly incorporate 
detailed accounts of decision uncertainty like the trial-
by-trial dependencies we found in our present experiment 
(although more complex models do; e.g., Treisman & Wil-
liams, 1984). Nevertheless, we attempted to determine 
whether the model could produce results like those seen in 
our present experiment and account for similar empirical 
phenomena that arise across a diverse set of experimen-
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Figure 10. Trial-by-trial dependencies from the confidence-rating task. Each column represents the previous response, and each row 
represents the current response. The size of filled circles is monotonically related to the number of trials in each conditional category.
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were all scaled with respect to a stimulus intensity unit 
corresponding to a single “*” symbol.

Our results show that we were able to reproduce the 
major results of our experiment with a relatively simple 
model. Our model had a total of seven free parameters, 
which we used to fit the C-ROC functions, the overall 
shape and area of the DS-ROC function, and the overall 
level of performance in the probability correct functions. 
UR(k) is determined by the C-ROC function and does not 
represent any additional degrees of freedom. Because 
probability correct is a function of the same response 
distributions but incorporates the base rate, it represents 
only three additional degrees of freedom in the data. No-
tably, the model behaves like the human observers: It does 
not show changes in the peak of UR(k), and it produces 
shifts in β and the crossover C-ROC functions while also 
generating identical DS-ROC functions. However, there 

correct functions that produce close-to-chance accuracy 
for low-probability/low-confidence responses, (3) identi-
cal DS-ROC functions for different base rates, and (4) the 
crossover C-ROC functions for three base rates, whose 
midpoints are the overall hit and false alarm rate for 
each condition. We estimated the best-fitting parameters 
by minimizing the sum of the root mean squared error 
(RMSE) badness-of-fit statistic for UR(k), probability cor-
rect, and C-ROC functions, and the absolute difference 
in the observed and simulated areas under the DS-ROC 
functions. Estimates were obtained using a Newton-type 
gradient descent method as implemented in the nlm func-
tion of R (R Development Core Team, 2006), starting from 
numerous initial positions in order to minimize the chance 
of inappropriate local minima. The estimated functions re-
sulting from these simulations are shown in Figure 11, and 
the obtained parameter values are in Table 1. Parameters 
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responses. The primary consequence of these differences 
is that in our experiment, the observed changes in ROC 
functions were smaller (yet still reliable), and the upper 
bound for the largest detectable criterion shift was rela-
tively large. Consequently, our experiment only had power 
to detect large changes. Thus, it is possible that the DNM 
might be unable to account for more challenging data, 
such as those reported by Balakrishnan (1998a).

We fitted the DNM to the C-ROC, UR(k), and probabil-
ity correct functions from the two experiments reported by 
Balakrishnan (1998a). Without external noise, the scale 
of the perceptual distributions is somewhat arbitrary, so 
we used similar mean values as our previous fits in order 
to foster easier comparison. These observed and simu-
lated functions are shown in the left column of Figure 12, 
and the obtained parameter values are shown in Table 1. 
This model used 11 fitted parameters to account for the 
response distribution across the 28 confidence ratings (14 
in each base rate condition). Results showed an excellent 
fit to data, in particular showing the changes in β, but no 
change in UR(k) or suboptimal response probabilities. The 
model is also able to produce probability correct func-
tions that fall below .5, which were not present in our ex-
periment. The model slightly mispredicts the points on the 
high-probability confidence responses in the rare stimulus 
condition, indicating that our assumption that all confi-
dence criteria shift equally relative to the classification 
criterion shift is probably incorrect. In addition, the ob-
served C-ROC functions are somewhat more linear than 
the simulated functions, indicating that the human observ-
ers’ confidence responses were less related to any internal 
evidence state than were those of the model. These two 
mispredictions are related: The model uses a large esti-
mated confidence criterion variance and spacing between 
criteria to estimate the spacing between adjacent points 
on the C-ROC function; by doing so, it produces some 
discriminability between adjacent confidence ratings, and 
the resultant C-ROC function bows outward in response.

Balakrishnan (1998a) reported results from a second 
experiment showing similar violations of SDT. Again, 
the results (shown on the right side of Figure 12) are well 

are several ways in which the model must be interpreted 
carefully. First, the model does not take into account re-
sponse dependencies, which appear to be quite important 
in our task. Also, the model was fitted to the pooled data 
across 43 participants, so any individual differences could 
be misattributed to decision noise. Finally, the model as-
sumes that the response policy is fixed relative to the cen-
tral classification criterion, that the confidence criteria 
are all sampled with the same variance, and that they have 
normal distributions. None of these assumptions is likely 
to be true, although they are reasonable enough to produce 
accurate fits to data.

One benefit of model fitting is the ability to interpret 
the obtained parameter values. These fitted parameter val-
ues (shown in Table 1) indicate that the standard deviation 
of the confidence criteria was roughly three times as large 
as the standard deviation of the classification criterion, 
suggesting that confidence ratings are less reliable than 
stimulus classifications.

Given the ability of the model to account for our re-
sults, we also attempted to fit the model to previously pub-
lished data sets that have been taken as evidence against 
SDT assumptions. We will show these fits next and use 
the goodness-of-fit and estimated parameters to evaluate 
whether the data present substantial problems for the no-
tion of a flexible decision criterion.

Application of the DNM to Balakrishnan (1998a)
Our experiment produced most of the important viola-

tions of SDT that were noticed by Balakrishnan (1998a), 
and our modeling showed that the data could be produced 
by a model that did have a shifting response policy, if con-
fidence noise was larger than classification noise. Our 
ROC analysis identified confidence-related processes 
as being the source of the violations, and our analysis of 
sequential dependencies also demonstrated an important 
response-related source of noise. However, our experiment 
did not exactly replicate earlier experiments by Balakrish-
nan (1998a, 1998b, 1999), since he used different types of 
discrimination tasks, adopted larger base rate manipula-
tions, and instructed observers to avoid low-confidence 

Table 1 
Parameter Estimates Obtained by Fitting the Decision Noise Model to the Data 

 in the Present Experiment and to Those of Balakrishnan (1998a)

Balakrishnan (1998a)

Parameter  Present Experiment  Experiment 1  Experiment 2

Mean of A distribution* 46 45 45
Mean of B distribution* 54 55 55
Distal stimulus SD* 5 0.01 0.01
Perception SD 0.0 0.0 0.0
Classification criterion SD 8.01 6.65 5.26
Confidence criteria SD 24.25 38.84 32.48
Equal-priors criterion 48.86 50.0 50.76
Criterion shift 61.66 4.64 2.85
Confidence criteria 6{213.73, 28.53, 24.09} 6{266.7, 254.5, 229.6, 6{294.4, 239.2, 222.2,

222.6, 20.76, 8.5} 222.2, 24.96, 27.9}

Note—The equal-priors criterion value is an absolute stimulus strength representing the default setting of the central 
criterion. The criterion shift reflects how much the central criterion moves in response to base rate manipulations, and 
the confidence criteria parameters represent the relative spacing of confidence criteria around the central classification 
criterion.  *Represents fixed parameters determined by experimental conditions.
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also Balakrishnan & MacDonald, 2002). Furthermore, in 
each case, the model accounted for the data by assuming 
that the criterion did shift, but that the shift was masked 
by decision noise.

Application of the DNM to Van Zandt (2000)
The previous model fits each examined the ability of 

the DNM to account for visual classification data pooled 
across participants for manipulations of base rate. How-
ever, so far we have ignored payoff manipulations, which 
have been shown to have effects similar to those of changes 
in base rate. Furthermore, pooling data across participants 
could hide individual variability that the model may be 
unable to capture. In order to demonstrate the power of 
the DNM for data from individuals, including payoff ma-
nipulations, we modeled the results of two experiments 
by Van Zandt (2000), who presented data from individual 
participants in a recognition memory experiment in which 
confidence ROC functions were collected and base rate or 
payoff structure was manipulated. Fits of the DNM to the 
data from 15 participants are shown in Figures 14–16.

Experiment  1 of Van Zandt (2000) included two 
between-participants conditions: fast and slow presenta-

accounted for by the DNM, and the fitted values were 
similar to those in the previous experiment, although the 
criterion shift was not as large.

In addition to fitting the statistics shown in Figure 12, it 
is important for us to show that the model can reproduce 
similar upper bound predictions about the amount of bias 
present in these experiments. In both of these experiments, 
not only was there little evidence for criterion shifts accord-
ing to the UR(k) function, the experiments should have been 
powerful enough to detect shifts, because the upper bound 
on the proportion of biased responses was fairly small (i.e., 
around .015). This result is indexed by the overall propor-
tion of least confident responses made in each experiment. 
Figure 13 shows the model’s predictions about the prob-
ability distribution across responses for both conditions of 
both experiments. Predicted values for the least confident 
responses were small and similar to the observed values.

These demonstrations show that the DNM is able to 
account for the observed data across three experiments in 
fairly precise, quantitative ways. Thus, a version of SDT 
extended to incorporate decision noise appears to be a rea-
sonably complete yet parsimonious account of the subop-
timalities and biases found by Balakrishnan (1998a; see 
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484        Mueller and Weidemann

the C-ROC functions are produced both by several human 
participants and by the DNM.

The values of the fitted parameters for the DNM are 
useful for interpreting the results. For these data, we esti-
mated two decision noise parameters: one for the central 
classification criterion, and a second for all the remaining 
confidence criteria. Additionally, we estimated three loca-
tion parameters: one for the central equal-odds/equal-base 
rate criterion, and two for the means of the four confidence 
criteria symmetrically distributed around the center. Thus, 
the baseline response policy was completely specified by 
five parameters. Additionally, the five condition manipu-
lations (base rate or payoff ) were fit by assuming that 
the entire response policy shifted its mean symmetrically 
about the equal-odds or equal-payoff point for the different 
conditions, resulting in two additional parameters. Percep-
tual noise variance was assumed to be 0 for these simula-

tion of words. Five participants in each presentation con-
dition were presented with twelve 32-word sets followed 
by 40-word test sets containing 8, 14, 20, 26, or 32 of the 
presented words. Another 5 participants took part in Ex-
periment 2, which had five different within-participants 
payoff conditions (0, 1, 2, 3, or 4 points for hits, and 4, 3, 
2, 1, or 0 points for correct rejections).

During the testing phase, participants were asked to rate 
on a 6-point Likert-type scale how certain they were that 
each word was old. Figures 14–16 show several statistics 
computed on these data across the different conditions and 
participants, as well as the DNM fit to the data.

Overall, the DNM provides an adequate fit to the data. 
Notably, substantial individual variability exists across the 
participants, and the model is able to capture this variabil-
ity with corresponding changes in parameter values. Al-
though it is difficult to see, substantial crossover effects in 
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Thus, our application of the DNM to the data in Van 
Zandt (2000) demonstrates that the effects revealed by the 
model hold up at an individual-participant level and are 
not a result of averaging across participants. Indeed, the 
model fit individual participants well with relatively few 
free parameters. Additionally, the model is able to account 
for violations of SDT stemming from payoff manipula-
tions, as well as base rate manipulations, in a recognition 
memory task.

Discussion

SDT has become—and is likely to remain—an important 
theoretical framework and a widely adopted data analysis 
tool, despite its many weaknesses. Its greatest strength and 
greatest weakness is its simplicity: It provides a parsimoni-
ous and easily applied account of perception and memory 

tions. Thus, a total of seven free parameters were estimated 
for each participant, which accounted for the 50 degrees 
of freedom of each C-ROC function in Figures 14–16. 
Five additional degrees of freedom in Experiment 1 and 
one degree of freedom in Experiment 2 are present in the 
probability correct data; thus, 51–55 degrees of freedom 
in the data were fitted for each participant using seven free 
parameters. Table 2 shows the fitted parameter values for 
all participants. Of special interest is the ratio between 
the classification noise and the confidence noise. As in 
the previous experiments, for each subject in each condi-
tion, this ratio was greater than 1.0—ranging from 1.37 to 
10.89—with a mean of 3.58, suggesting that confidence 
noise is greater than classification noise. Furthermore, 
differences between conditions were attributed to shifts in 
the decision criterion, even though few of the UR(k) func-
tions suggest that the criterion shifted.
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Figure 15. Decision noise model fitted to data from Experiment 1, fast condition of Van Zandt (2000). Each row depicts observed and 
fitted data from a different participant. The first two columns are observed and fitted UR(k) functions, columns 3 and 4 are observed 
and fitted probability correct, and columns 5 and 6 are observed and fitted C-ROC functions. Each connected sequence of points 
represents a different base rate condition.
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Our research has uncovered three important results 
suggesting that there is substantial uncertainty in re-
sponse processes: (1) The observed DS-ROC functions 
do not change in response to base rate manipulations, 
despite changes in C-ROC functions; (2) a high propor-
tion of sequential dependencies were found in confi-
dence responses; and (3) the DNM, which extended SDT 
to confidence ratings with decision noise, accounted for 
these data patterns across multiple data sets by assum-
ing decision-related noise. Together, these results sug-
gest that participants do not use static evidence criteria 
to make responses, and they are especially unable or 
unwilling to use confidence ratings in a consistent way. 
Instead, great uncertainty exists between different confi-
dence states, and confidence responses appear to depend 
on factors other than the internal level of perceptual evi-
dence. Next, we will examine each of our main findings 
in greater detail.

retrieval that captures almost none of the true detail of the 
underlying processes. Balakrishnan’s (1998a, 1998b, 1999) 
extensive research on the assumptions and violations of 
SDT has been an important contribution to the literature 
on SDT and should not be cast aside lightly. Indeed, it has 
shown that there are profound suboptimalities and biases 
in true responding that are not captured by SDT. Yet, many 
of his critiques are made on the basis of data from confi-
dence rating procedures, which add an additional layer of 
complexity (and an additional set of assumptions) to their 
interpretation. Thus, it is possible that the apparent viola-
tions of the assumptions made by SDT are really violations 
of the assumptions about how confidence judgments are 
made. Insofar as classic SDT assumes that responses are 
under strategic control, it is reasonable for one to incorpo-
rate suboptimal response policies into an extension of the 
theory, and, by doing so, we have shown that many of the 
apparent violations of SDT can be explained.
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Figure 16. Decision noise model fitted to data from Experiment 2 of Van Zandt (2000). Each row depicts observed and fitted data 
from a different participant. The first two columns are observed and fitted UR(k) functions, columns 3 and 4 are observed and fitted 
probability correct, and columns 5 and 6 are observed and fitted C-ROC functions. Each connected sequence of points represents a 
different payoff condition.
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these dependencies are fundamental normative aspects of 
human responding that have been learned through experi-
ence or that have evolved over the course of phylogeny 
because they are useful in many important situations. This 
may include shifts in classification criteria that occur as a 
result of learning and feedback. Alternately, they may re-
flect optimal strategic responses to improperly perceived 
sequential dependencies. A third explanation is that they 
may arise because of a need to maintain consistency: Two 
consecutive stimuli that are perceptually similar may be 
given a similar confidence rating. Participants may in 
fact not be aware of the perceptual evidence used to make 
their decisions and may have essentially only two discrim-
inable states that confidence ratings can be produced from 
(an argument that originated during the debates between 
threshold theory and SDT; see Malmberg, 2002, for a re-
view). Thus, the sequential dependencies may not be a 
fundamental property of the perceptual or response pro-
cesses, but a side effect of the task that asks participants 
to distinguish between indiscriminable states.

The DNM
In this article, we presented a new extension of SDT 

that we call the DNM, which allowed different sources 
of noise to be parametrically manipulated and estimated 
from data. We showed that this model could fit observed 
data, and suggested that confidence-related noise may be 
the source of the crossover ROC functions and the ob-
served failure of UR(k) peaks to move in response to base 
rate or payoff manipulations.

Most importantly, the model revealed that across a range 
of participants, experimental paradigms, and researchers, 
noise related to confidence assessment was consistently 
larger than noise related to two-category classification. 
This result indicates that confidence ratings are relatively 
unreliable and may lack power for testing assumptions 
about underlying perceptual distributions. Consequently, 
the model shows that decision noise is a factor that should 
be taken seriously in order to understand decision making 
under uncertainty.

External Noise and Distal-Stimulus- 
Related Statistics

We showed that the source of the ROC asymmetry can 
be identified by comparing DS-ROC and C-ROC func-
tions, and we found that for our data, these asymmetries 
stemmed from response processes. Statistics related to the 
DS-ROC function have seen little use in SDT analysis, al-
though they are easy to compute as long as external noise 
is added to the stimuli and the level of this noise on each 
trial is recorded. Although we did not do so in the pres-
ent article, one could use the area under this function as 
a measure of perceptual-response sensitivity akin to A′, A 
(Zhang & Mueller, 2005), or d ′. If our conclusions are 
correct and decision noise plays a substantial role in signal 
detection tasks, then such stimulus-related statistics offer 
an important tool for dissociating changes in perceptual 
and decision noise across conditions.

Sensitivity measures depend critically on what factor 
is used as a measure of the distal stimulus, because they 
indicate the extent to which this variable is related to the 
information used to make the response. Although we 
used a value that was maximally diagnostic for our task, 
related functions could be computed for other variables, 
and the area under the function can serve as an index 
of the extent to which a variable affects discriminability. 
This could be especially useful in memory tasks, where 
DS-ROC functions could be computed for different psy-
cholinguistic measures (e.g., frequency, imageability) or 
other manipulations (e.g., study time, repetitions) and 
could index the extent to which a specific variable is re-
lated to response discriminability. Variables completely 
unrelated to discrimination produce an area close to 0.5, 
whereas variables more closely related to discrimination 
produce areas closer to 1.0.

Sequential Dependencies
We also found substantial sequential dependencies in 

the responses made during our task. Such dependencies 
are common in many perceptual tasks and could have 
arisen for a number of reasons. One possibility is that 

Table 2 
Parameter Estimates of the Decision Noise Model to the Data From Van Zandt (2000)
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1 slow 1 5.852 10.149 1.73 0.451 5.123 49.195 20.872 21.431
1 slow 2 5.668 33.106 5.84 215.965 20.622 52.423 20.591 21.962
1 slow 3 5.674 13.471 2.37 210.426 21.399 51.509 20.018 21.447
1 slow 4 6.959 23.425 3.37 225.762 14.718 50.976 20.421 23.271
1 slow 5 4.991 8.758 1.75 20.538 8.846 50.584 20.379 21.125

1 fast 1 8.717 28.078 3.22 235.239 19.351 51.440 20.850 20.919
1 fast 2 7.827 16.653 2.13 21.876 7.710 51.092 0.094 20.134
1 fast 3 11.182 29.165 2.61 25.241 11.032 50.983 20.020 23.378
1 fast 4 8.796 19.088 2.17 26.606 6.098 52.468 0.336 21.982
1 fast 5 9.939 49.093 4.94 259.961 237.480 53.216 21.429 24.559

2 1 10.700 82.676 7.73 227.602 28.004 51.501 26.948 29.032
2 2 14.227 154.924 10.89 2125.264 43.671 50.289 27.341 212.567
2 3 13.029 19.216 1.47 3.121 20.635 49.134 21.640 23.575
2 4 7.155 15.427 2.16 3.757 19.437 50.091 24.567 29.337
2  5  10.425  14.257  1.37  0.998  7.011  48.365  21.294  22.705
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many previous researchers have criticized SDT for ignor-
ing (a similar argument was made recently by Benjamin, 
Diaz, & Wee, 2007).

We believe that the time has come to acknowledge the 
importance of decision noise in signal detection tasks and 
to begin moving beyond the simple application of SDT. 
Even if the basic assumptions of SDT are correct, when-
ever decision noise exists, d ′ and β may be unable to sepa-
rate perceptual and decision processes in any meaningful 
way, and will thus be of little use. Balakrishnan’s (1998a, 
1998b, 1999) proposed statistics were intended to test for 
the existence of suboptimality in the decision rule, and are 
thus unable to distinguish between perceptual and deci-
sion noise as well. We hope that through techniques using 
external noise (like the DS-ROC function used in the pre-
sent article), future research may be better able to isolate 
influences of the perceptual and response systems and to 
arrive at a clearer understanding of human perception and 
choice under uncertainty.
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Appendix A 
The Decision Noise Model

The decision noise model is a simple attempt to add confidence judgments to a signal detection model while 
allowing for environmentally introduced external noise, perceptual noise, and decision noise. Many different meth-
ods, distributions, and evidence combination rules could be used to simulate these processes, and the differences 
between them are beyond the scope of this article. Our model generalizes these processes, using a simple account 
of criterion variability. To begin, we define the signal and noise distributions (i.e., the distal stimuli) with the pos-
sibility of externally introduced noise. In signal detection theory (SDT), it is typically assumed that this noise is 0 
or that it is confounded with perceptual noise, but in practice, signal detection tasks often introduce such noise in 
a measurable way. For the density functions ( f ) shown below, µ and σ refer to mean and standard deviation of the 
normal distribution—N( µ, σ). If stimuli are presented without external noise, then the value of σ would be 0.

	 fdistal signal stimulus  N( µS, σS)	

	 fdistal noise stimulus  N( µN, σN)	

Next, we define the perceptual noise distribution and compute the perceptual stimulus distributions. In classic 
SDT, the perceptual noise distribution is typically assumed to be the primary factor influencing the d ′ statistic. With 
⊗ denoting the convolution operation between two density functions, the perceptual stimulus distributions produced 
by successive random sampling from external noise and perceptual noise are defined in Equations A1–A3.

	 fperceptual noise 5 N(0, σperc)	 (A1)

fsignal perceptual distribution 5 fdistal signal stimulus ⊗ fperceptual noise	 (A2)

fnoise perceptual distribution 5 fdistal noise stimulus ⊗ fperceptual noise 	 (A3)

In Equation A1, σperc refers to the standard deviation of the perceptual noise. Now, a response policy must 
be defined that describes the probability of choosing each response given a perceptual stimulus intensity. For a 
two-alternative classification, we assume that the response is made by comparison to a classification criterion 
that is sampled from a normal distribution whose mean and variance are free parameters. Here, we define

	 F x f y dyx( ) ( ) .= −∞∫ 	

The density of the sampling distribution is defined in Equation A4, and the resultant response policies are de-
fined in Equations A5 and A6.

	 fclassification criterion 5 N(µclass 1 δcondition, σclass)	 (A4)

	 pyes(x) 5 Fclassification criterion(x)	 (A5)

	 pno(x) 5 1 2 pyes(x)	 (A6)

In Equation A4, µclass and σclass refer to the baseline mean and standard deviation of the classification criterion, 
and δcondition refers to the shift in the mean associated with the respective experimental condition. pyes(x) indicates 
the probability of giving a “yes” response if the perceptual stimulus has value x. Next, we assume that confidence 
responses are controlled by comparison to multiple sampled confidence criteria through a conditional comparison 
process. We assume that there are 2K confidence criteria with distributions whose means are distributed sym-
metrically around the classification criterion (and which are free parameters in the model). After the classification 
criterion is compared with the percept, the locations of confidence criteria are sampled, and consecutive compari-
sons are made with successive criteria until a criterion exceeds the sampled percept (by which we mean that it is 
further away from the sampled response criterion than is the percept). The criteria are examined in nominal order 
from the center outward; their actual sampled values may fall in another order and, indeed, their means are not 
restricted to follow any specific order. As a notational convenience, we define the absolute decrement function 
dec(i) 5 sign(i)[abs(i) 2 1] for abs(i) $ 1, so that if i is 4, then dec(i) is 3, and if i is 23, then dec(i) is 22. Then, 
the conditional densities of the sampled criteria are shown in Equations A7 and A8.

	 fk0
  5  fclassification criterion	 (A7)

fki| x exceeds kdec(i) 5 N( µclass 1 δcondition 1 δki
, σconf)	 (A8)

i ∈ {2K, . . . , 22, 21, 1, 2, . . . , K}

δki
 5 2δk2i

In Equation A8, δki
 refers to the difference between the mean of the classification criterion and the mean of con-

fidence criterion ki, and σconf refers to the standard deviation of the confidence criteria (i.e., confidence noise).
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The unconditional probability of a sampled percept exceeding each criterion can be calculated as:

	 Fki
(x) 5 Fki | x exceeds kdec(i)

(x)  Fx exceeds kdec(i)
(x),	 (A9)

where
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Finally, in order to compute the probability of each confidence response being made given a percept x, we 
compute for each i ∈ {2K, . . . , 22, 21, 1, 2, . . . , K}:

	 pconfidence2(K11)
(x) 5 1 2 Fk2K

(x)

	 pconfidencei
(x) 5 Fki

(x) 2 Fkdec(i)
(x)

	    pconfidence(K11)
(x) 5 FkK

(x).

Simulated response policy functions computed with this formula are plotted in the main text in Figure 2. A 
central classification criterion and 2K confidence criteria generate 2(K 1 1) confidence responses. Note that 
there is no equal-confidence response in this model, but one could be added by ignoring the medial classification 
criterion and treating the percepts between the two innermost sampled criteria as the equivocal region.

It is easily verified that for every x, Σi pconfidencei
(x) 5 1, because all values of Fki

(x) are between 0 and 1, so the 
progression forms a telescoping series in which all intermediate terms cancel. Thus, for any x, pconfidencei

(x) is a 
probability distribution over i. Together, pconfidencei

(x) define a complete response policy, which can be combined 
with signal and noise perceptual distributions and stimulus base rates to estimate signal detection parameters 
either through a Monte Carlo simulation or numerical integration. For example, the C-ROC functions are defined 
by the ordered pairs

	 p j p j
j i

N

j i

N

noise signal
= =

∑ ∑






( ), ( ) 	

for each criterion i of the N confidence criteria, where

	 psignal(i) 5 ∫x pconfidencei
(x) 3 fsignal perceptual distribution(x) dx	

and

	 pnoise(i) 5 ∫x pconfidencei
(x) 3 fnoise perceptual distribution(x) dx.

The functions UR(k) can be computed directly from the C-ROC function by computing

�	
p j p j

j k

N

j k

N

signal noise( ) ( ).−
==
∑∑ 	

As defined, the decision noise model can be simulated via Monte Carlo techniques so that individual trials 
are simulated by sampling perceptual, external, and decision noise. This process is extremely computationally 
intensive; thus, instead, we implemented the models in the statistical computing language R (R Development 
Core Team, 2006) by numerically computing the densities of the distributions and by computing the effect of 
consecutive random samples on these densities using the convolve() function in R. This function computes 
a numerical convolution of two distribution densities using a fast Fourier transform operator. Doing so allows 
us to quickly obtain highly accurate estimates of the probability distributions for each confidence response, 
enabling data fitting through Newton-like methods using the R nlm function. Because perceptual noise was 
set to 0 for the simulations presented here, the convolution operation is actually unnecessary, since the distal 
stimulus is identical to the percept. 
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Appendix B 
Procedures for Computing ROC Functions

If data from an experiment having multiple confidence ratings and multiple external noise levels are cross-
tabulated, then the DS-ROC function is computed by applying the same steps used to form the C-ROC function, 
but on the rows instead of the columns (or vice versa). In order to illustrate this correspondence, we will first 
show how C-ROC functions are formed on a sample data set, and then how DS-ROC functions are formed from 
the same data set.

Suppose that data were collected in an experiment in which visual stimulus intensity had six distinct values 
(100, 200, 300, 400, 500, or 600) and in which responses were made on a 6-point confidence scale, with 1–3 
indicating a “low” response, and 4–6 indicating a “high” response. Table B1 shows hypothetical results from 
such an experiment with 200 trials.

Table B1 
Cross-Tabulated Data From a Hypothetical Experiment 

With Six Confidence States (1–6) and 
Six Distal Stimulus Intensities (100–600)

Rating

Low High

Intensity  1  2  3  4  5  6

100 5 5 6 2 3 2
200 9 15 8 3 6 3
300 4 8 13 2 3 3
400 2 3 6 9 7 5
500 2 6 2 9 11 6
600 1 3 2 7 7 12

Note—Each cell represents the number of trials that had a specific stim-
ulus intensity and confidence response.

Computing the C-ROC Function
The C-ROC is formed by first dividing the trials into two classes, on the basis of either stimulus intensity 

or some nominal class that the actual stimulus was sampled from. In our example, we classify stimuli with an 
intensity of 300 or less as “noise,” and stimuli with higher intensities as “signal.” These two stimulus classes 
are shown in Table B2.

Table B2 
Distribution of Confidence Ratings 

for Noise and Signal Trials

Rating

Low High

Trial Type  1  2  3  4  5  6  Σ
Noise 18 28 27   7 12   8 100
Signal    5  12  10  25  25  23  100

Hit rate and false alarm rates can be computed from these distributions once a decision criterion is selected. 
For example, if the criterion were placed between confidence levels 2 and 3, then the hit rate (signal trials cor-
rectly called signal) would be 83/100. Likewise, the false alarm rate (noise trials incorrectly called signals) 
would be 54/100. In this analysis, we examine all hypothetical decision criteria, which consist of the points that 
divide adjacent confidence states. Table B3 shows hit rate and false alarm rate for each hypothetical criterion.

Finally, for each criterion, the corresponding hit rate and false alarm rates are plotted to form the C-ROC 
function. The C-ROC function corresponding to the data from Table B1 is shown in Figure B1.

Table B3 
Cumulative Hit Rate and False Alarm Rate for Hypothetical Decision Criteria (k), 

for Both Signal and Noise Trials

Criterion (k)

  k , 1  1 , k , 2  2 , k , 3  3 , k , 4  4 , k , 5  5 , k , 6  6 , k

False alarms 100 82 54 27 20   8 0
Hits  100  95  83  73  48  23  0
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Figure B1. C-ROC function from hypothetical data in Table B1. 
Each point is identified with its corresponding numbers from 
Table B3, which are 100 times the plotted values.

Computing the DS-ROC Function
The DS-ROC function is computed by applying the same steps used to compute the C-ROC function, but on 

the columns of Table B1 rather than on the rows. First, the different confidence responses from Table B1 are 
aggregated into two classes (“high” vs. “low”), maintaining the distribution across distal stimulus intensities. 
These values are shown in Table B4.

Table B4 
Number of Trials Across 

Stimulus Intensities 
for Each Response Class

Response

Stimulus Intensity  Low  High

100   16   7
200   32   12
300   25   8
400   11   21
500   10   26
600   6   26
Σ  100  100

Just as hit rate and false alarm rate were computed for the C-ROC function, one computes the distribution of 
stimulus classes for each transition between stimulus intensities. In effect, this procedure answers the question, 
“What are the probabilities of ‘low’ and ‘high’ ratings for different levels of stimulus intensity?” For example, 
if the hypothetical division between signal and noise were between 200 and 300, then this would have produced 
52/100 signal trials for “low” responses and 81/100 signal trials for “high” responses. For each hypothetical 
point separating stimulus intensities, the number of “low” and “high” responses are shown in Table B5.

Appendix B (Continued)
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Table B5 
Proportion of Trials 

With Intensity Greater Than k, for 
All Hypothetical Values of k 
and Both Response Classes

Response

Division (k)  Low  High

           k ,   100 100 100
100 , k , 200   84   93
200 , k , 300   52   81
300 , k , 400   27   73
400 , k , 500   16   52
500 , k , 600   6   26
600 , k    0    0

Finally, values in this table are converted to relative frequencies and plotted against one another to form the 
DS-ROC function. Figure B2 shows the DS-ROC for our example, with each point labeled by the corresponding 
numbers from Table B5.

0

.2

.4

.6

.8

1.0

DS-ROC Function

p(High|Low Response)

p
(H

ig
h

|H
ig

h
 R

es
p

o
n

se
)

(100,100)
(84,93)

(52,81)

(27,73)

(16,52)

(6,26)

(0,0)

0 .2 .4 .6 .8 1.0

Figure  B2. DS-ROC function from hypothetical data in 
Table B1. Each point is identified with its corresponding num-
bers from Table B5, which are 100 times the plotted values.

Application to Real Data
The contrived example we provided is convenient, because regardless of whether stimuli were divided into two 

classes on the basis of stimulus or response, there were exactly 100 of each. This is typically not the case for experi-
mental data, but the analysis does not depend on the overall proportion of stimuli and responses being equal.

In many experiments, not all data shown in Table B1 are available. Typically, no independent measure of 
stimulus intensity is recorded; thus, when confidence ratings are collected, only the data in Table B2 are avail-
able. On the other hand, if one wants to compute the DS-ROC function, then no confidence ratings are required, 
and data collected in an experiment that did not use confidence ratings might look like those in Table B5. In 
our experiments, we used stimulus intensities that varied over a range of about 30 points, so our data matrix 
contained 30 rows and 8 columns. Because we have so many levels of stimulus intensity, we typically plot the 
DS-ROC as the line connecting the points, without identifying each individual point in the function.
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