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The legibility of the letters in the Latin alphabet has been measured numerous times since the beginning of
experimental psychology. To identify the theoretical mechanisms attributed to letter identification, we report
a comprehensive review of literature, spanning more than a century. This review revealed that identification
accuracy has frequently been attributed to a subset of three common sources: perceivability, bias, and simi-
larity. However, simultaneous estimates of these values have rarely (if ever) been performed. We present the
results of two new experiments which allow for the simultaneous estimation of these factors, and examine
how the shape of a visual mask impacts each of them, as inferred through a new statistical model. Results
showed that the shape and identity of the mask impacted the inferred perceivability, bias, and similarity
space of a letter set, but that there were aspects of similarity that were robust to the choice of mask. The re-
sults illustrate how the psychological concepts of perceivability, bias, and similarity can be estimated simul-
taneously, and how each make powerful contributions to visual letter identification.
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1. Introduction

One of the landmark artifacts of western culture is a common
writing system based on the Latin alphabet. The importance of the
Latin alphabet has inspired researchers since the early days of modern
psychology and visual science to investigate how letters are identified,
and to characterize the similarity structure of the alphabet (Cattell,
1886; Javal, 1881). Over the past 130 years numerous researchers
have studied the alphabet, and have attributed performance in letter
identification and rating tasks to factors such as letter perceivability,
letter similarity, and response biases. However, it is often challenging
to distinguish the effects of these factors, and thus difficult to establish
the psychological validity and independence of each individual factor.
For example, a letter may be identified poorly because it is inherently
difficult to perceive, or because it is highly similar to other letters in
the alphabet, or because observers are reluctant to give the correct re-
sponse. Thus, the relationship between these factors, and indeed
whether they are all even independent theoretical concepts, remains
an open question.
The purpose of this article is to look at the factors that historically
have been used to account for letter identification accuracy, and to
propose a model by which these factors can be estimated. Specifically,
we will examine past research on the identification and confusion of
the alphabet, in order to (1) identify the contexts in which the alpha-
bet has been studied in the past, (2) establish the psychological
meanings of perceivability, similarity, and response bias, and (3) iden-
tify a method and model for estimating the three factors simulta-
neously from two experiments we will also report. We will begin by
discussing a comprehensive review of this research on the alphabet.

1.1. Overview of prior research motivations and theoretical constructs

Most previous behavioral research on the alphabet has focused on
describing the perceivability, confusability, or similarity space of the
letters. By and large, studies can be characterized by three primary
motivations: (1) applied attempts to make written text more com-
prehensible or allow learners to acquire reading skills more easily;
(2) empirical research aimed at understanding the visual system;
and (3) theoretical research attempting to characterize or model
how letters are represented by the visual or cognitive system.

Many early researchers were concerned with identifying type-
faces, fonts, and letters that were more or less legible, with the aim
of improving printing and typesetting. For example, Javal (1881),
Helmholtz's students Cattell (1886) and Sanford (1888), Roethlein
(1912), and Tinker (1928) all attempted to rank letters in their
order of legibility, and also identified letter pairs that were especially
confusable in order to allow faster reading and less error-prone com-
munication. Cattell (1886), Javal (1881), and Sanford (1888) each
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made suggestions about how to modify some letters to be more dis-
tinguishable and readable. One of the most substantial efforts aimed
at improving the legibility of typeset text was made by Ovink
(1938), who published a book describing in detail the errors and con-
fusions produced for letters and numbers of eleven different fonts, in-
cluding detailed recommendations for how each letter should be
formed to improve its legibility. Other early applied research was
concerned with ophthalmological tests (including Javal, 1881, as
well as Hartridge & Owen, 1922 and Banister, 1927). Similar applied
research has continued in more recent years: Bell (1967), Gupta,
Geyer, and Maalouf (1983) and van Nes (1983) each have dealt
with practical modern applications of font face and letter confusions.

Not surprisingly, because much of this research attempted to iden-
tify font faces that were more or less easy to read, the primary psycho-
logical construct adopted by these researchers was akin to
perceivability (although researchers often used the term legibility). In
addition, many of these researchers also noted when letters were espe-
cially confusable because of visual similarity. For example, Roethlein
(1912) reported the rank order of letter legibility, implying that percei-
vability is an inherent aspect of the form of the letter, but also reported
common confusions, implying similarity was an additional factor.

Despite the obvious practical applications for this type of research,
by far the most common motivation for collecting letter similarity ma-
trices has been to understand aspects of the perceptual system. Early
researchers performed detailed psychophysical studies into the limits
of letter perceivability with respect to numerous secondary variables
(e.g., presentation time: Sanford, 1888; distance and size: Korte,
1923, Sanford, 1888; peripheral eccentricity: Dockeray & Pillsbury,
1910), adopting techniques that continue to be used today. Later re-
searchers have attempted to use similarity and confusion matrices to
understand other aspects of visual perception, such as representation
and configurality (e.g., McGraw, Rehling, & Goldstone, 1994). The inter-
est in studying the alphabet has even generalized beyond investiga-
tions of visual perception to include studies of tactile perception
(Craig, 1979; Loomis, 1974), learning (Popp, 1964), choice behavior
(Townsend, 1971a,b) and other relevant psychological phenomena.

Such studies have often attempted to verify or test models of per-
ceptual decision making. These models frequently included a descrip-
tion of the visual features used to represent letters, which in turn
have produced similarity matrices of their own. Occasionally, these
theoretic similarity matrices have been published, albeit sometimes
in the form of a representational feature set that can be used to rep-
resent all letters (Geyer & DeWald, 1973, Gibson, 1969). These
models also began to introduce response bias as a quantifiable mea-
sure (e.g., Townsend, 1971b). But typically, response bias was
coupled only with letter-pair similarity to account for data patterns,
abandoning the notion of perceivability. The almost universal presence
of similarity-based confusions typically make a perceivability-bias
model untenable prima facie, and because (for many models and experi-
mental methods) perceivability is completely constrained once the en-
tire similarity structure has been defined, perceivability has been
viewed as redundant. In this view, perceivability is equated with a let-
ter's mean similarity to the rest of the alphabet.

Other theoretical measures of letter similarity have been devel-
oped that were not directly based on theories or models of the visual
system, but rather examined the physical images representing the
letters. For example, some researchers have used simple methods of
letter congruency or overlap (e.g., Dunn-Rankin, Leton, & Shelton,
1968; Gibson, 1969) to measure letter similarity, whereas others
have developed more elaborate techniques relying on Fourier decom-
position (Blommaert, 1988; Coffin, 1978; Gervais, Harvey, & Roberts,
1984). These methods rarely make any commitments about biases or
perceivability, and focus on producing objective measures of letter
similarity. They offer the potential for validating novel alternative
theories of visual letter perception, as they produce fundamentally
different similarity spaces for letters. For example, overlap measures
are perhaps most consistent with the hypothesis of Bouma (1971),
who advocated the importance of letter and word shape (formal
implementations of which have more recently been explored by
Latecki, Lakaemper, & Wolter, 2005). Overlap methods, as well as
Fourier methods, are consistent with global-to-local encoding hy-
potheses (e.g., Dawson & Harshman, 1986; Navon, 1977), and both
of these strategies differ from the more dominent bottom-up feature-
coding approach.

In addition to objective similarity measures, recent work by Pelli,
Burns, Farell, and Moore-Page (2006) and others (e.g., Majaj, Pelli,
Kurshan, & Palomares, 2002) has reintroduced complexity measures
that can be applied to individual letters, and thus may provide similar
objective measures of perceivability. To our knowledge, such metrics
have not been reported for entire alphabets, although Pelli reported
summary measures across font faces.
1.2. Overview of methodologies

The most commonly used procedure to evaluate an alphabet in-
volves presenting characters and requiring an observer to name the
identity of the presented character. In this paradigm, a confusion ma-
trix can be constructed by computing the number of times each letter
was given as a response for each presented letter. Typically, these let-
ter naming procedures have produced confusion matrices with most
trials being correct (along the diagonal), with most other cells
empty or having just a few errors, and a few specific confusions (usually
between visually similar letters) capturing most of the errors. Because
letter pairs are not compared directly, these naming methods are indi-
rect measures of letter similarity, in that errors presumably index the
similarity between the presented stimulus and participants' memories
for each alternative response.

The informativeness of an experiment can be enhanced when
more errors are committed, and so a number of techniques have
been used to induce more detection and naming errors. As reviewed
above, experiments have commonly used standard psychophysical
techniques (such as brief, small, peripheral, noisy, or low contrast
presentations) to reduce naming accuracy and develop better estimates
of letter similarity. Furthermore, some researchers have studied haptic
identification of letters (Craig, 1979; Kikuchi, Yamashita, Sagawa, &
Wake, 1979; and Loomis, 1974, 1982), which tends to be more error-
prone than visual identification, and others have tested subjects who
naturally make errors in letter identification, even when the stimuli
are presented clearly, such as children (Courrieu & de Falco, 1989;
Gibson, Osser, Schiff, & Smith, 1963; Popp, 1964), pigeons (Blough,
1985), or patients withmotor output difficulties (Miozzo & De Bastiani,
2002). Because these subjects are often unable to name letter stimuli,
these researchers sometimes measured performance by presenting a
small set of alternatives (often just two) from which a response could
be chosen. In contrast to the letter naming procedures described earlier,
these are more direct measures for assessing similarity, because com-
parisons between the alternative letters can bemade explicitly between
presented stimuli, rather than requiring comparison of a stimulus to
well-learned internal representations.

Other direct methods for measuring letter similarity have been
used as well. For example, some researchers havemeasured similarity
by asking participants to rate how similar each pair of letters is (e.g.,
Boles & Clifford, 1989; Kuennapas & Janson, 1969; Podgorny & Garner,
1979) or have otherwise elicited subjective similarity estimates
(Dunn-Rankin, 1968). In addition, saccade times and accuracies (Jacobs,
Nazir, & Heller, 1989), and response times from a same-different task
(Podgorny & Garner, 1979) might be considered direct measures, be-
cause they elicit responses to direct comparison of two percepts.

Across these past experiments, a wide variety of methods have
been used to measure letter similarity. We have conducted an exten-
sive review of the literature in which we have found more than 70
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cases where letter similarity for the entire alphabet was measured
and reported. These are summarized in Table 1.

To be included in Table 1, we required that an experiment included
most or all of the 26 characters in the Latin alphabet typically used in
English spelling. A substantial number of research reports have shown
similarity effects of a small subset of letters, often incidental to the
original goals of the research, and we did not include these.1 Several
papers we reviewed and included in Table 1 did not contain com-
plete similarity matrices, but instead reported sets of confusable let-
ters (e.g., Roethlein, 1912), or listed only the most confusable letters.
We felt that these were sufficiently useful to merit inclusion. Finally,
some theoretical techniques we included in Table1 did not produce ac-
tual similarity matrices, but did report feature-based representations
for letters. Because these representations can easily be used to derive
theoretical similarity matrices, we have included this research as well.
As a final note, we came across numerous experiments and research re-
ports that collected, constructed, or mentioned otherwise unpublished
letter similarity matrices, but did not report the actual matrices. We
did not include these reports in Table 1, as these data sets are probably
lost forever. Table 1 briefly describes the measurement methods, letter
cases, and font faces used in the experiments.

1.3. Synthesis of theoretical conclusions

The behavioral studies summarized in Table 1 typically attributed
accuracy to one or more of three distinct factors: visual perceivability,
visual similarity, and response bias. Many early researchers who studied
letter identificationwere primarily interested in the relative perceivability
or legibility of different characters. We view perceivability as a theoreti-
cal construct affecting the probability the observer forms a veridical per-
cept from the stimulus, independent of response factors. Perceivability
might be attributed to manipulations or features that facilitate the ex-
traction of identifying information from the presentation of a stimulus,
such as changes in presentation duration (e.g., Banister, 1927), size
(e.g., Korte, 1923), or eccentricity in visual periphery (e.g., Dockeray &
Pillsbury, 1910). The notion of perceivability has continued to be relevant
in modern theories such as signal detection theory (corresponding
roughly to sensitivity parameters), and was used directly in the all-or-
none activation model proposed by Townsend (1971a).

In contrast, we will consider similarity to be related to factors that
affect the distinctiveness of a stimulus within a set of other stimuli. It
can be challenging to disambiguate similarity from the absolute per-
ceivability of a letter, and perhaps because of this, similarity has
eclipsed perceivability as the primary factor of interest in the study
of alphabets. Although these constructs are hypothetically distinct,
there are both practical and theoretical concerns over whether they
can be separately estimated from data. In naming tasks (used in
about 50 of the experiments we reviewed), errors stemming from
perceivability often cannot be distinguished from errors stemming
from similarity, because erroneous identification responses always
tend to favor the most similar alternative, and because perceivability
can usually be defined as a letter's mean similarity to the rest of the
alphabet. Even when using other tasks, however, researchers often
attempted to use similarity alone to account for their data (e.g., Podgorny
& Garner, 1979), assuming a confusion matrix is a direct measure of let-
ter similarity.

In many cases, data have suggested the presence of response biases in
addition to effects of perceivability and/or similarity (e.g., Gilmore, Hersh,
Caramazza, & Griffin, 1979; Townsend, 1971a,b). We view response
1 We have included several experiments that measured similarity effects for nearly
the entire alphabet, because we felt that the resulting similarity matrices were useful
enough towarrant inclusion despite the omission of a small number of letters. Specifically,
we included Kuennapas and Janson (1969) who used the Swedish alphabet which does
not include the “w” but does include three additional characters; Dunn-Rankin (1968),
who used only the 21 most common letters of the alphabet; and Bouma (1971), who ex-
cluded the letter “y” in one condition of his experiment.
biases as a factor that impacts the probability ofmaking a response, inde-
pendent of the stimulus. Response biases are present in classical theories
of detection such as high-threshold theory (cf. Macmillan & Creelman,
1990, 2005), and for letter identification such biases were noted as
early as 1922 (Hartridge & Owen, 1922). However, response biases
gained wider use in the analysis of letter confusion data with the devel-
opment of axiomatic theories of detection, such as the so-called Bradley–
Terry–Luce Choice theory (Bradley & Terry, 1952; Luce, 1959, 1963) and
signal detection theory (SDT, Green & Swets, 1966). A common practice,
followed by several experiments in Table 1, is to account for letter iden-
tification accuracies based on similarity and bias together (e.g., Gilmore
et al., 1979; Townsend, 1971a,b). According to these theories, people
may have biases for or against giving certain responses, which together
with the similarity of the target to a foil, determine the probability of
making a correct response. These may be pure guessing biases invoked
only when a participant is uncertain (as in high-threshold theory), or
they may be biases in evidence decision criteria (as assumed by SDT or
choice theory).

These three factors (perceivability, similarity, and bias), although
hypothetically distinct, have rarely, if ever, been combined into a sin-
gle model to account for alphabetic confusion data. This stems, in
part, from the methodological difficulty in separately identifying con-
tributions of perceivability and similarity in most of the studies
reviewed above. However, it may also be conceptual: it could be
viewed as more parsimonious to conceptualize perceivability as global
similarity of a given stimulus to all the stimuli in the stimulus set. Appli-
cations of choice theory typically take this perspective, dividing accura-
cy into similarity and bias, whereas signal detection theory frames the
corresponding division as sensitivity (perceivability) and bias. However,
neither approach considers all three simultaneously and independently.
Consequently, given that perceivability, similarity, and bias have each
been used in previous research to account for letter identification data,
in the remainder of the paper, wewill report on a research effort that at-
tempts to do so, through empirical study and mathematical modeling.

In order to measure the joint impact of these three factors, we used
an empirical method that was not used to measure the similarity space
of the complete Latin alphabet in any of the experiments we reviewed
in Table 1: two-alternative forced-choice perceptual identification (2-
AFC, e.g. Ratcliff & McKoon, 1997; Ratcliff, McKoon, & Verwoerd,
1989; Huber, Shiffrin, Lyle, & Ruys, 2001;Weidemann, Huber, & Shiffrin,
2005, 2008). Variations on the 2-AFC task have been in common use
since at least the 1960s in memory and perceptual experiments, and
the task was used prominently in experiments testing threshold theo-
ries of perception against strength-based accounts (such as SDT and
choice theory, cf. Macmillan & Creelman, 2005). In the 2-AFC task, a
participant is presented with a brief target stimulus, often preceded
and/or followed by a mask. After the masked character is presented,
the participant is shown two choices: the target, and an incorrect alter-
native (i.e., the foil). The participant then indicates which of the two
options was presented.

Several previous experiments reviewed in Table 1 have used general
forced-choice procedures, but all have differed substantially from the 2-
AFC taskwewill report next. For example, the children in Popp's (1964)
experiment were shown a target, and then given the choice of two let-
ters (the target and a foil). However, errors occurred because the chil-
dren had not learned letter discrimination perfectly, and probably not
because of any perceptual deficiencies. Dunn-Rankin (1968) also
showed participants a letter followed by two comparison letters, but
in that experiment the two choices did not always include the target,
and participants were instructed to select the most visually similar op-
tion. Blough (1985) conducted an experiment similar to Popp (1964),
but used pigeons instead of children. Finally, Jacobs et al. (1989) used
a choice task to measure saccade accuracies and latency: participants
were shown an uppercase target and then presented with two lower-
case letters in the periphery; and were instructed to move their eyes
to the lowercase version of the target.



Table 1
Summary of experiments reporting letter similarity matrices.

Reference Method Case Typeface

Cattell (1886) Naming errors B Latin serif
Naming errors B Fraktur

Sanford (1888) Naming errors of distant stimuli L Snellen
Naming errors of brief stimuli L Snellen
Naming errors of brief stimuli L Old-style Snellen

Dockeray and Pillsbury (1910) Naming errors of stimuli in periphery L 10-pt. Roman old-style
Roethlein (1912) Confusable letter sets B 16 different fonts
Hartridge and Owen (1922) Naming of distant stimuli U Green's Letter Set
Korte (1923) Naming of distant stimuli B Antiqua

Naming of distant stimuli B Fraktur
Banister (1927) Naming of distant brief stimuli U Green's Letter Set

Naming of distant brief stimuli U Green's Letter Set
Naming of distant stimuli U Green's Letter Set

Tinker (1928) Naming of brief stimuli B Bold serif font
Ovink (1938) Naming of distant stimuli B 11 different fonts
Hodge (1962) Letter reading errors B Uniform-stroke alphabet
Gibson et al. (1963) Children's matching of target to set of random choices U Sign-typewriter

Children's matching of target to set of similar or dissimilar letters U Sign-typewriter
Popp (1964) Forced choice confusions of children L Century-style
Bell (1967) Naming errors of brief stimuli U Long Gothic

Naming errors of brief stimuli L Murray
Dunn-Rankin (1968) Similarity preference of letter pairs L Century Schoolbook
Dunn-Rankin et al. (1968) *Shape congruency L Century Schoolbook
Kuennapas and Janson (1969) Subjective similarity ratings L Sans serif Swedish alphabet
Uttal (1969) Naming errors of brief masked stimuli U 5×7 dot matrix
Laughery (1969) *Feature Analysis U Roman block letters
Gibson (1969) *Feature Analysis U Roman block letters
Fisher et al. (1969) Naming errors of 200-ms stimuli U Futura medium

Naming errors of 400-ms stimuli U Futura medium
Naming errors of brief stimuli1 U Leroy lettering set

Townsend (1971a) Naming errors of brief unmasked stimuli U Typewriter font
Naming errors of brief masked stimuli U Typewriter font

Townsend (1971b) Naming errors of brief unmasked stimuli U Typewriter font
Bouma (1971) Naming errors of distant stimuli L Courier

Naming errors of stimuli in periphery L Courier
Geyer and DeWald (1973) *Feature analysis U Roman block letters
Engel et al. (1973) Naming errors of brief stimuli L Century Schoolbook
Loomis (1974) Tactile letter identification U 18×13 matrix
Briggs and Hocevar (1975) *Feature analysis U Roman block letters
Mayzner (1975) Naming errors of brief stimuli U 5×7 dot matrix
Thorson (1976) *Overlap values based on feature analysis U Roman block letters
Geyer (1977) Naming errors of brief dim stimuli L Tactype Futura demi 5452
Coffin (1978) *Fourier spectra similarity U 128×128-pixel block letters
Podgorny and Garner (1979) Same-different choice RT U 5×7 Dot matrix chars.

Subjective similarity ratings U 5×7 Dot matrix chars.
Gilmore et al. (1979) Naming errors of brief stimuli U 5×7 Dot matrix chars.
Kikuchi et al. (1979) Tactile letter identification U 17×17 Dot matrix chars.
Craig (1979) Tactile letter identification U 6×18 Dot matrix chars.
Keren and Baggen (1981) *Feature analysis U 5×7 Dot matrix chars.
Johnson and Phillips (1981) Tactile letter identification U Sans serif embossed letters
Loomis (1982) Visual identification U Blurred Helvetica

Tactual identification U Helvetica
Paap et al. (1982) Naming errors U Terak
Gupta et al. (1983) Naming errors of brief dim stimuli U 5×7 Dot matrix chars.

Naming errors of brief dim stimuli U Keepsake
Phillips et al. (1983) Naming errors of small visual stimuli U Helvetica

Tactile identification U Sans serif
Gervais et al. (1984) Naming errors of brief stimuli U Helvetica

*Similarity of spatial frequency spectra U Helvetica
van Nes (1983) Naming errors of brief peripheral stimuli L 12×10 pixel matrix–least confusable (IPO-Normal)

Naming errors of brief peripheral stimuli L 12×10 pixel matrix–most confusable
van der Heijden et al. (1984) Naming errors of brief stimuli U Sans serif roman
Blough (1985) Pigeon's 2-alternative letter matching U 5×7 dot matrix
Blommaert (1988) *Fourier spectra similarity L 16×32 pixel matrix courier
Heiser (1988) *Choice model analysis of confusions U Sans serif roman
Jacobs et al. (1989) Saccade times to matching target L 9×10 pixel matrix

Saccade errors to distractor L 9×10 pixel matrix
Boles and Clifford (1989) Subjective similarity ratings B Apple-Psych letters
Courrieu and de Falco (1989) Children identifying targets that matched uppercase reference L Printed script
Watson and Fitzhugh (1989) Naming errors of low-contrast stimuli U 5×9 pixel font (gacha.r.7)
McGraw et al. (1994) Letter identification with keyboard L “Gridfont” chars.
Reich and Bedell (2000) Naming of tiny or peripheral letters U Sloan Letters
Liu and Arditi (2001) Naming of tiny crowded or spaced letter strings U Sloan Letters
Miozzo and De Bastiani (2002) Writing errors of impaired patient B handwriting
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Table 1 (continued)

Reference Method Case Typeface

Experiment 1 Forced choice identification of letter with distractor: @-mask U Courier
Forced choice response latencies: @-mask U Courier

Experiment 2 Forced choice identification of letter with distractor: #-mask U Courier
Forced choice response latencies: #-mask U Courier

Note. In the Case column, “L” indicates lowercase, “U” indicates uppercase, and “B” indicates both cases were studied. Methods denoted with an * were measures developed b
analyzing the visual form of letters, and not directly based on data from observers.

1 Fisher et al. (1969) reported previously unpublished data collected by R. W. Pew and G. T. Gardner.
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The 2-AFC procedure has some potential advantages over letter
naming techniques. Two of these advantageswerementioned explicitly
byMacmillan and Creelman (2005): it tends to reduce bias, and to pro-
duce high levels of performance. Consequently, the procedure may
mitigate some of the effects of guessing and response biases that
can be introduced in naming procedures. It also provides a more direct
measure of similarity, because every pairing of letters is measured ex-
plicitly, rather than using the low-probability naming confusions as an
index of similarity. Thus, it has the potential to measure differences in
similarity between letter pairs that are only rarely confused. Important-
ly, although it is unclearwhether 2-AFCwill eliminate biases altogether,
it will isolate the bias to just the particular pairs in which the biased let-
ter is a target or a foil. This will in turn enable detection of a small bias in
situations where another bias would otherwise dominate. Similarly,
because each letter pair is explicitly compared, asymmetries be-
tween target-foil and foil-target roles of a letter pair can provide lever-
age to distinguish similarity and perceivability effects. Because of these
advantages, a 2-AFC taskmay enable better estimation of bias, perceiva-
bility, and similarity. Of course, the 2-AFC procedure also has some po-
tential drawbacks: it requires an arbitrary manual response, and it does
not require a priori knowledge of the stimuli, whichmakes it somewhat
unlike tasks such as reading, letter naming, and typingwhich people do
outside the lab setting.

Our studies used a character mask to reduce accuracy and make
changes in duration more effective. Despite the claim that the specific
choice of a mask can limit generalizability (cf. Eriksen, 1980) and oc-
casional evidence for such effects (cf. Townsend, 1971a,b), the effect
of specific masks across the entire alphabet needs to be better under-
stood. We chose a single static mask to match the conditions of full-
word 2-AFC experiments not reported here, but it should be recog-
nized that the use of a single non-changing mask throughout an ex-
periment might produce habituation effects that impact the study
results in systematic but unforeseen ways. A number of alternative
masking methods exist that, if used, could potentially increase the
generalizability of the present studies, including pixel noise masks,
dynamic masks that change on each trial (to prevent habituation to
a single mask), masks that are conglomerates of multiple letter
parts, or the avoidance of masks altogether by reducing contrast. Yet
the alternatives have their own limitations: pixel noise or reduced con-
trast may simply tend to impact the discrimination of high-frequency
features (rather than lower-frequency features with a character mask),
and dynamic masks that change on each trial may introduce non-
systematic influences into the decision process that a static mask
holds constant. As we will show, systematic effects related to these
masks illustrate some of the specific ways masks impact letter
detection.
Fig. 1. Depiction of the stimuli and mask used in the forced-choice experiments. The
“M” fills a 13-wide by 12-high pixel grid.
2. Experiment 1

To collect letter similarity data, we conducted an experiment in-
volving a 2-AFC perceptual letter identification task. In this task, let-
ters were presented briefly and flanked by a pre- and post-mask
allowing us to also investigate how similarities between the targets
and masks impact these factors.
y

2.1. Method

2.1.1. Participants
One hundred and eighteen undergraduate students at Indiana

University participated, in exchange for introductory psychology
course credit.

2.1.2. Materials, equipment and display
All 26 upper-case letters of the Latin alphabet served as stimuli.

Letters were presented in 16-point Courier New Bold. All letters ex-
cept “Q” were 12 pixels high and all letters were between 8 and 13
pixels wide. An “@” was adjusted in font and size (“Arial Narrow
Bold”, 14 pt.) to cover the display area of the letters. A depiction of
the stimuli and mask, enlarged to show the anti-aliasing and pixela-
tion present on the display terminal, appears in Fig. 1. The “#” charac-
ter depicted in Fig. 1 was not used in the current experiment.

All stimuliwere displayed on17″-diagonal PCmonitorswith a vertical
refresh rate of 120 Hz. The display was synchronized to the vertical re-
fresh using the ExpLib programming library Cohen and Sautner (2001).
This provided a minimum display increment of 8.33 ms, but due to the
occasional unintentional use of different software driver settings, the dis-
play increments for a few participants were as high as 10 ms.

The stimuli were presented in white against a black background.
Each subject sat in an enclosed booth with dim lighting. The distance
to the monitor (controlled by chin rests positioned approximately
60 cm from the screen) and font size were chosen such that the
height of the to-be-identified letter encompassed approximately
.54° of visual angle.

Responses for the 2-AFC test were collected through a standard
computer keyboard. Participants were asked to press the “z”-key
and the “/”-key to choose the left and right alternative respectively.

2.1.3. Procedure
Each trial began with the presentation of an “@”-sign pre-mask

(300 ms) immediately followed by the target letter (for an individually
adjusted duration as described below). Immediately after the offset of
the target letter an “@”-sign post-mask was presented and remained
until 600 ms after the first pre-mask was presented (regardless of
how long the stimuli was presented). The post-mask was immediately
followed by two choices presented to the right and left, with the posi-
tion of the correct choice randomly determined on each trial.

The first block of 96 trials of the experiment was used to adjust the
display time of the target presentation such that performance was
roughly 75%. Adopting a staircase procedure, performancewas evaluated
every 12 trials and duration of the target presentation was adjusted at
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these points based on the performance in the previous 12 trials (with
larger changes initially and smaller changes towards the end of the cali-
bration period). Target letters and foils for these calibration trials were
randomly chosen (with replacement) from the alphabet. After this cali-
bration block, the display duration was not adjusted again.

Across participants, the mean presentation time obtained by using
this procedure was 54 ms, but as is typical for studies using a 2-AFC
perceptual identification paradigm (e.g. Huber et al., 2001, 2002a,b;
Weidemann et al., 2005, 2008), there were large individual differ-
ences: The minimum, 25th-percentile, median, 75th-percentile, and
maximum target presentation times were 10, 39, 50, 64, and
150 ms, respectively.

Following the block of 96 calibration trials, there were five blocks
with 130 experimental trials each. Each block was preceded by three
additional practice trials which were discarded (targets and foils for
these practice trials were randomly chosen, with replacement, from
the alphabet). Target and foil letters were assigned to test trials ran-
domly with the restriction that all 650 possible combinations of tar-
gets and foils needed to be presented exactly once in the test trials
of the experiment.

Feedback was given after every trial. A check-mark and the word
“correct” appeared in green when the answer was correct and a
cross-mark (“X”) and the word “incorrect” were presented in red
when the answer was incorrect. The feedback stayed on the screen
for 700 ms and was immediately followed by the presentation of
the pre-mask for the next trial (unless the current trial was the last
trial in a block).

After each block, participants received feedback providing the per-
centage of correct trials in the last block and the mean response time
(this was the only time when feedback about response time was
given, and the instructions emphasized accuracy rather than response
speed). Between blocks, participants were encouraged to take short
breaks and only resume the experiment when they were ready to
continue. The entire experiment took about 45 min.

2.2. Results

Our experiment provides two measures by which letter identifica-
tion performance can be assessed: accuracy and response latencies.
Although accuracy is the primary dependent variable of interest, re-
sponse latencies might also be of interest, even though participants
were not explicitly encouraged to respond quickly. Both of these
types of data are shown in Table 2, with accuracy in the top half of
the table and mean response time in the bottom half of the table.
For the response latencies, we eliminated the 89 trials (out of
76,700) on which the response took longer than 5 s. Otherwise,
both correct and incorrect trials were included.

Correct responses were made on average 110 ms faster than in-
correct responses (542 ms vs. 652 ms), which was highly reliable
(t(117)=9.05, pb.01). Across the 650 cells in Table 2, this mani-
fested as a Pearson's correlation of −.49, which was statistically
reliably negative (pb.001). This correlation is not unexpected,
but because of this relationship between speed and accuracy, and
because the task was designed to measure response accuracy, we
performed all subsequent analyses using only the accuracy values
found in Table 2.

The data shown in Table 2 are perhaps too complex to easily
make sense of. We have therefore plotted mean accuracies from
Table 2 in Fig. 2, with respect to the target (top panel) and foil
(bottom panel).

For each target letter, the mean accuracies across the 25 foils
would be expected to have a binomial distribution, if there were no
impact of bias or similarity and if all participants were identical. For
a binomial distribution with mean .77 and 118 observations (as in
our experiment), the standard error of the estimate isffiffiffiffiffiffiffiffiffiffiffiffi

:75×:25
118

q
¼ :0387. Our data violate this binomial model, such that 103
out of 118 participants had mean accuracies that fell outside the 95%
confidence range of .743 to .798. Consequently, we simulated ranges
for each letter via a bootstrapping technique, as follows. First, a single
log-odds factor was estimated for each participant that determined
how much better or worse his or her mean accuracy was (across the
entire experiment) than average. These deviations were then used
to create a hypothesized distribution of binomial parameters for
each target character, and a 95% confidence interval was created em-
pirically by first sampling a participant, adjusting the accuracy in log-
odds space by the factor assumed for each participant, and using this
adjusted factor to run a binomial trial and determine whether the
comparison was correct or incorrect. For each column, 5000 experi-
ments of a size equal to Experiment 1 were simulated in this fashion,
and the gray rectangle represents the 95% confidence region around
the mean accuracy for that target.

Fig. 2 illustrates a number of qualitative phenomena that suggest
each of the three factors of perceivability, bias, and similarity are at
play in our experiment. For example, a hallmark of high or low per-
ceivability is that a target's accuracy should rise or fall regardless of
the foil, (not just because of a few foils). This type of effect occurred
for a number of target letters (for example, “A”, “J”, “Q”, and “X” tend
to show below-average accuracy, and “B”, “M”, “R”, “S”, and “V” ex-
hibit above-average accuracy across most foils). These effects are
not isolated to just the mean accuracy, but impact the target accura-
cy for almost all foils. Furthermore, a hallmark of high or low bias is
that a foil's accuracy should rise or fall regardless of the target.
Although bias will impact a target as well, perceivability should
not depend on the foil, and so bias effects should typically impact
accuracy regardless of the target (for example, this is seen for the
foils “I”, “L”, and “Z”, which tend to produce higher than average
accuracy, and the foils “D”, “O”, “U”, which are associated with
lower than average accuracy across many targets). Finally, a signa-
ture of a similarity effect is that a letter pair deviates from the im-
pact that would be seen from the bias and perceivability alone. A
number of individual letter pairs match this pattern (such as combina-
tions of “O”, “Q”, and “D”).

This qualitative analysis also suggests several phenomena related to
the post-stimulusmask. First, the target that was least accurate was the
“A”. This may have occurred because the “@” mask, which contains a
lowercase “a”, somehow interfered with correct identification of the
“A”. Another provocative result revealed by Fig. 2 is that when a
round letter (i.e., “O”, “D”, “Q”, “U”, “G”, or “C”) appeared as a foil, accu-
racy suffered. These letters are visually similar to the “@”mask, and this
similarity may lead people to choose the foil more often when it was
round, resembling the mask. Finally, accuracy for these round letters
was not especially improved when they appeared as targets, indicating
that the visually similar mask interfered with perceptual identification,
despite participants' increased tendency to choose them. Several foil
letters led to above-average accuracy (i.e., “I”, “T”, and “L”). These letters
stand out as being very dissimilar to both themask and to other letters,
indicating that people may have beenmore easily able to eliminate this
option and select the target correctly.

These initial results of Experiment 1 indicate that the shape and
identity of the mask may affect letter identification accuracy in im-
portant ways. To better investigate this influence, we carried out a
second (otherwise identical) experiment using a different commonly-
used mask.
3. Experiment 2

3.1. Method

3.1.1. Participants
Ninety-six undergraduate students at Indiana University participated

in exchange for introductory psychology course credit.



Table 2
Accuracy and response time matrix for Experiment 1.

Target
letter

Foil letter

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A .636 .610 .627 .729 .661 .678 .653 .814 .661 .627 .695 .695 .712 .602 .568 .568 .661 .686 .771 .619 .712 .729 .669 .644 .703
B .814 .814 .805 .847 .839 .712 .822 .873 .856 .856 .890 .788 .864 .864 .831 .771 .814 .831 .831 .788 .847 .822 .822 .814 .873
C .695 .729 .593 .814 .814 .661 .754 .780 .788 .729 .797 .797 .737 .508 .703 .585 .797 .720 .788 .602 .695 .763 .788 .788 .771
D .737 .729 .686 .822 .831 .627 .780 .805 .780 .763 .788 .780 .805 .585 .797 .542 .763 .805 .890 .644 .771 .797 .847 .831 .847
E .797 .686 .695 .695 .729 .797 .780 .890 .763 .797 .839 .746 .831 .746 .746 .729 .831 .754 .890 .703 .839 .814 .788 .763 .805
F .814 .678 .737 .771 .593 .771 .788 .847 .814 .763 .780 .788 .720 .737 .763 .780 .695 .720 .822 .839 .831 .788 .763 .822 .771
G .729 .686 .636 .559 .822 .831 .729 .839 .873 .763 .771 .763 .814 .669 .746 .695 .754 .771 .831 .653 .797 .771 .805 .822 .805
H .788 .788 .788 .763 .797 .814 .746 .856 .805 .686 .831 .780 .763 .763 .729 .831 .771 .771 .780 .771 .720 .720 .754 .788 .780
I .653 .737 .729 .729 .814 .771 .746 .754 .720 .703 .636 .771 .754 .712 .720 .746 .695 .737 .695 .746 .686 .763 .797 .695 .814
J .746 .695 .695 .669 .703 .729 .636 .737 .712 .746 .797 .780 .788 .661 .686 .737 .712 .763 .788 .636 .788 .636 .805 .703 .703
K .814 .822 .797 .797 .763 .746 .754 .771 .881 .839 .822 .720 .864 .788 .831 .737 .780 .763 .822 .729 .788 .805 .754 .805 .780
L .669 .712 .746 .729 .797 .737 .805 .788 .754 .720 .695 .754 .771 .720 .746 .746 .763 .737 .695 .788 .771 .763 .780 .746 .805
M .822 .788 .847 .847 .797 .822 .797 .771 .822 .797 .805 .864 .746 .822 .864 .831 .788 .814 .847 .797 .780 .788 .831 .831 .881
N .780 .814 .788 .720 .856 .814 .788 .644 .873 .822 .712 .814 .780 .729 .754 .797 .712 .822 .763 .763 .754 .746 .788 .754 .797
O .686 .729 .720 .746 .763 .839 .780 .754 .771 .805 .788 .754 .822 .771 .831 .627 .754 .788 .780 .695 .771 .746 .814 .771 .780
P .746 .644 .686 .703 .805 .797 .695 .864 .822 .822 .814 .805 .856 .873 .729 .754 .703 .746 .822 .729 .797 .814 .814 .805 .831
Q .695 .712 .720 .678 .788 .729 .661 .788 .797 .805 .712 .788 .746 .839 .347 .703 .720 .831 .831 .593 .754 .763 .788 .661 .763
R .881 .771 .703 .898 .822 .839 .771 .797 .856 .763 .771 .847 .780 .873 .780 .788 .814 .754 .881 .822 .898 .771 .814 .890 .839
S .831 .729 .780 .805 .814 .864 .746 .831 .831 .847 .805 .864 .873 .831 .805 .831 .780 .788 .814 .822 .881 .890 .873 .839 .822
T .746 .839 .771 .780 .771 .746 .780 .805 .780 .797 .771 .797 .763 .814 .847 .822 .763 .780 .831 .847 .746 .797 .703 .797 .763
U .771 .678 .746 .686 .814 .729 .686 .822 .788 .788 .805 .805 .788 .797 .678 .746 .619 .695 .822 .822 .712 .822 .669 .763 .805
V .839 .856 .847 .788 .822 .873 .805 .847 .873 .839 .898 .924 .881 .907 .814 .814 .847 .839 .822 .839 .856 .814 .864 .831 .814
W .754 .771 .754 .822 .780 .737 .805 .814 .805 .814 .754 .805 .644 .686 .805 .720 .805 .822 .754 .780 .771 .788 .780 .763 .797
X .780 .678 .763 .678 .771 .678 .729 .754 .822 .712 .644 .797 .661 .788 .746 .771 .720 .746 .729 .805 .686 .712 .669 .686 .746
Y .797 .839 .881 .695 .847 .771 .814 .831 .873 .856 .822 .788 .805 .771 .822 .839 .864 .873 .881 .797 .822 .695 .847 .771 .805
Z .831 .873 .703 .788 .712 .788 .814 .754 .856 .729 .754 .729 .805 .797 .805 .712 .805 .712 .754 .814 .788 .771 .856 .746 .788
A 618 586 599 641 577 567 671 643 605 571 612 637 626 604 596 626 592 652 602 588 605 587 654 669 613
B 561 551 612 520 501 575 546 511 505 502 535 510 504 551 544 540 577 605 538 530 564 539 531 514 532
C 597 632 623 589 589 650 573 552 570 595 585 569 552 534 647 684 631 657 557 627 556 577 580 552 614
D 586 609 619 587 576 567 595 573 602 569 566 560 601 573 571 651 639 572 575 623 537 576 581 569 553
E 550 573 525 527 581 507 541 507 566 534 569 549 518 496 560 638 559 568 525 507 521 557 545 538 585
F 520 560 567 535 629 557 568 530 588 580 529 584 534 492 542 564 547 560 546 540 562 556 573 546 602
G 630 615 709 631 603 596 608 537 658 653 572 588 616 587 569 628 574 613 611 687 601 617 632 585 603
H 543 495 502 569 551 574 541 472 538 557 552 606 612 495 526 536 576 549 511 574 594 585 528 526 546
I 516 495 512 558 545 577 522 521 553 570 578 521 518 483 518 456 494 477 583 563 526 546 518 578 530
J 525 582 559 538 586 553 560 597 607 591 598 569 568 530 538 572 584 571 604 543 538 583 610 599 585
K 515 503 541 548 572 538 504 560 468 528 532 622 585 557 491 543 524 537 528 547 487 588 569 532 599
L 546 517 512 518 532 611 489 530 562 591 535 535 491 500 530 560 576 507 556 508 510 592 514 560 529
M 498 515 497 506 493 604 483 617 500 483 504 524 567 506 497 496 524 581 514 528 534 603 517 506 465
N 536 506 523 554 579 520 557 586 483 534 576 551 585 537 500 506 535 493 491 497 572 615 596 559 549
O 586 677 646 622 597 572 555 602 621 622 643 598 640 600 595 598 598 574 530 667 611 565 599 593 609
P 507 552 555 567 546 553 541 556 504 512 544 521 517 556 531 548 572 612 548 511 471 564 528 507 552
Q 647 603 670 619 628 572 784 640 587 566 642 597 641 624 672 637 599 609 661 697 662 654 632 641 621
R 550 564 574 543 555 535 533 546 500 507 556 511 574 523 542 558 539 552 575 512 531 567 489 493 570
S 533 591 546 519 600 547 506 486 507 505 518 498 529 518 584 557 530 554 555 479 490 552 537 504 538
T 491 462 452 458 567 509 491 526 540 559 499 540 491 526 518 487 530 534 476 487 560 570 567 523 558
U 541 624 582 685 544 545 620 549 604 635 561 595 592 552 525 612 633 655 581 523 610 551 573 572 608
V 457 478 464 494 495 515 480 544 494 476 520 537 525 531 501 462 535 483 505 506 558 501 495 536 510
W 554 525 515 507 542 556 543 575 499 511 609 593 635 631 493 533 504 495 572 548 542 560 593 551 545
X 615 556 519 533 574 575 516 551 587 541 570 542 567 614 494 533 531 557 596 587 581 634 617 589 581
Y 534 494 467 491 571 488 456 586 531 497 508 570 451 495 496 494 509 493 484 556 516 579 583 544 518
Z 567 542 566 562 563 566 553 609 580 602 611 590 576 607 493 547 532 573 490 571 568 545 527 518 570

Note. Values in top half of table indicates the proportion of participants who responded correctly for each target-foil combination. Values in the bottom half indicate the mean
response time (in ms) for correct and incorrect responses.
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3.2. Materials, equipment, and display, and procedure

The procedure used in Experiment 2 was identical to Experiment 1
in every way, except for the use of the“#” symbol instead of the “@”

symbol as a post-stimulus mask. The mask was adjusted in font and
size (“Arial Bold”, 17 pt.) to cover the display area of the letters. A
depiction of this mask is shown in Fig. 1.

3.3. Results

As with Experiment 1, letter identification performance can be
assessed by examining both the accuracy and response latencies of
trials in which one stimulus was a target and the other was the foil.
These data are shown in Table 3, with accuracy in the top half and
mean response time in the bottom half of the table. For the response
latencies, we eliminated the 262 trials (out of 62,400) on which the
responses took longer than 5 s. Otherwise, both correct and incorrect
trials were included.

In Experiment 2, correct responses were made on average 93 ms
faster than incorrect responses (581 ms vs. 674 ms), which was high-
ly reliable (t(95)=7.4, pb.01). Across the 650 cells in Table 3, this
manifested as a Pearson's correlation of−.38, which was reliably nega-
tive (pb.001). As with Experiment 1, we performed all subsequent ana-
lyses on the accuracy data only.

Fig. 3 depicts the accuracies for each letter combination, sorted by
target and foil. As we found in Experiment 1 (cf. Fig. 2), there were
consistent deviations in accuracy when letters appeared as targets,
and also when letters appeared as foils. The 96% confidence range
for each target is shown as a shaded region in each column, and the
confidence range for the means are also shown by the horizontal
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Fig. 2. Accuracy for letter combinations in Experiment 1, for letter pairs sorted by target
(top panel) or by foil (bottom panel). The gray boxes in each column depicts the 96%
confidence range for each target-foil combination, using a bootstrapping process to in-
corporate between-participant variability in mean accuracy. Observations well outside
these bounds correspond to conditions where (top) bias and similarity are strong, or
(bottom) perceivability and similarity are strong. Exact values are listed in Table 2.
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lines. Again, as with Experiment 1, these confidence ranges are simu-
lated via a bootstrapping procedure that incorporates between-subject
variability in mean performance (the expected binomial 95% range for
participant means was .726 to .781, and 82/96 participants fell outside
that range).

One surprising result, shown in Fig. 3, is that participants were ex-
tremely poor at identifying the target letters “I” and “T”. Accuracy was
above average on trials when either was presented as a foil, indicating
a bias against making these responses. Overall, many letters
containing vertical and horizontal features (“I”, “T”, “H”, perhaps
including “X”) were identified less accurately when they were targets,
whereas letters with round shapes (“O”, “D”, “C”, “G”, “R”) did not
produce below-average accuracy as in Experiment 1. Unlike Experi-
ment 1, the letter “A” was identified with above average accuracy.

These qualitative descriptions of the data are difficult to evaluate
on their own, because in many cases the identification accuracy ap-
pears to depend on the letter presented, the foil, and the mask. Next,
we will present a model that attempts to quantitatively estimate the si-
multaneous contributions of perceivability, similarity, and bias to these
patterns of results.

4. Modeling the sources of letter detection accuracy

Our review of the literature suggests that conceptually, letter de-
tection accuracy may be influenced by perceivability, bias, and simi-
larity. Yet few (if any) quantitative attempts have been made to
estimate these three factors simultaneously for the alphabet. Most
previous attempts have decomposed accuracy into two fundamental
factors, typically using a version of the “similarity” or “biased” choice
model (Luce, 1963; Shepard, 1957). This theory constitutes an axiomatic
model of how biases, similarities, and the number of choice alternatives
impact detection accuracy. Other alternatives have been discussed pre-
viously, (cf. Smith, 1992; Townsend, 1971a), which typically involve dif-
ferent mathematical forms for combining influences of similarity and
bias. We will adopt a fairly theory-agnostic statistical model of the
joint impacts of perceivability, response bias, and similarity which (as
we show in the Appendix) permits interpretation in terms of the biased
choice model.

4.1. A statistical model of letter detection

We developed the statistical model presented here specifically to
illustrate how the data from our two experiments can be used to si-
multaneously estimate perceivability, bias, and similarity. For our 2-
AFC procedure, each cell of the confusion matrix is assumed to be
measured independently. Each of the N(N−1)=650 cells produced
an accuracy value, which we will represent as pi, j, where i represents
the target letter and j represents the foil. No observations are made
for cell i= j, which differs from naming studies, in which the diagonal
i= j indicates correct responses, and typically represents the bulk of
the data. Thus, there are at most N(N−1) degrees of freedom for
each experiment. The model attempts to estimate log-odds accuracy
( ln pi;j

1−pi;j

� �
) based on a linear combination of other factors.

In our model, we assume that a percept is produced that may dif-
fer somewhat from the target stimulus, and this difference affects the
accuracy for the target in general, regardless of the foil. We estimate
the extent to which this difference affects accuracy with parameter
λi, which describes the perceivability of stimulus si in log-odds units.
If the value of λi were 0, (with no other contributors), this would pro-
duce a log-odds accuracy value of 0 (or 50% accuracy) for that stimu-
lus. As λi increases, baseline accuracy for that stimulus increases. For
convenience, we estimate a baseline intercept (μ) which represents
the overall perceivabilitywithin an experiment, and estimate individual
values of λ relative to this intercept. Consequently, positive values indi-
cate greater than average perceivability, and negative values indicate
smaller than average perceivability, and a full estimate of perceivability
for a letter i can be computed as μ+λi. In the baseline model where a
perceivability parameter is estimated for each letter, ∑ iλi=0, which
is logically necessary to allow the intercept to be estimated.

Several psychological processes could influence λi. For example,
perceivability may have its impact during early perceptual stages, af-
fecting the probability that an accurate image is perceived, perhaps
distorted through internal or external noise sources. Our model
does not distinguish between these sources, although one could if
proper experimental procedures were employed (cf. Mueller and
Weidemann, 2008). Alternately, λi may be influenced by some aspect
of the comparison process, assessing the similarity between a percept

image of Fig.�2
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and the displayed response option. If a mask consistently introduced
or erased features from the percept of a particular character, this
would likely result in a lower value for λi; if it consistently erased fea-
tures across all stimulus characters, the baseline intercept might be
reduced instead.

Next, we assume that response biases exist for each of the two re-
sponse alternatives. We denote bias with the symbol γi for response
alternative i, and assume that it also impacts log-odds accuracy linear-
ly. If γi is 0, the observer has no bias for a specific alternative. Positive
values of γi indicate bias toward a response, so a positive bias for a tar-
get and/or a negative bias for a foil improves accuracy. In the baseline
model where a bias parameter is estimated for each letter, the bias
values are also constrained to sum to 0.

Finally, we assume that the similarity between the percept of the
stimulus and that of the foil impacts log-odds response accuracy linearly.
In the model, we define a parameter corresponding to the dissimilarity
between stimulus i and response j on log-odds accuracy called δi, j. For
δ, a value near 0 indicates that the accuracy can be well explained by
the estimated perceivability and bias main effects alone. Positive δ
values indicate greater dissimilarity, such that the letter pair is particu-
larly easy to distinguish. Conversely, negative δ values indicate greater
confusability, and produce lower accuracy than would be expected
from bias and perceivability alone. Note that there might also be a num-
ber of distinct psychological interpretation of δi, j. Many approaches are
often interested in the (dis)similarity between canonical representa-
tions of letter forms, but for our experiment (in which the foil response
is not known before the stimulus flash), δ really estimates the dissimi-
larity between a noisy target percept and the percept of the response al-
ternative following stimulus presentation. Under this interpretation,
perceivability is really just another type of dissimilarity: the distinctive-
ness between the noisy target percept and the correct response option
(as opposed to the incorrect response option). As we show in the Ap-
pendix, perceivability thus corresponds to δi, i.

A simple model might attempt to account for log-odds accuracy
based on an intercept μ, N perceivability parameters λ (with at most
N−1 degrees of freedom), N bias parameters (again with at most N−1
degrees of freedom), and N2−N similarity parameters. Obviously, there
are more predictors than data in such a model, so we will always con-
strain similarity to be a symmetric (δi, j=δj, i), which contributes only
N*(N−1)/2 parameters to the predictive model. This model, too, is
non-identifiable, and so one can also introduce other constraints, such
as ∑ i, jδi, j=0 or ∑ iλi=0. However, we avoid making these assump-
tions by adopting a parameter selection method that uses only parame-
ters that are relatively powerful at accounting for data. Parameter
selection has been used frequently in linear regression models to help
identify parsimonious and descriptive models with relatively few pa-
rameters (e.g. Hoeting et al., 1996; Mitchell and Beauchamp, 1988;
O'Gorman, 2008; Yamashita et al., 2007). These methods are especially
useful in cases such as ours, where the number of possible predictors is
in fact greater than the degrees of freedom in the data. Using this meth-
od, we retain the constraint that δi, j=δj, i, but no other row or column
sum constraints are needed—when a parameter is removed from the
model, it frees up a degree of freedom to be used to estimate the inter-
cept or higher-order main effects.

One theoretical benefit of using a parameter selection method (in
contrast to traditional factorial approaches) is clear if one considers
two target characters in a hypothetical experiment with five foil char-
acters. Suppose the targets each have a mean accuracy of 0.75; one
because its accuracy is .75 for each foil it was compared to, and the
second because for four of the foils, its accuracy is .8125, but for the
remaining foil, its accuracy is 0.5 (0.8×0.8125+0.2×0.5=0.75). A
complete factorial model would estimate a mean accuracy of .75 for
each target, estimating five similarity scores of 0 for the first target,
and four slightly positive and one large negative similarity score for
the second target. But if one allows non-critical parameters to be re-
moved from the model, the first target's mean accuracy would again
be .75, with the five similarity parameters removed from the model.
In contrast, the second target's mean accuracy would rise to .8125,
with a single additional similarity parameter to account for the
below-average foil. Thus, variable selection can provide a relatively
parsimonious coding that matches an intuitive explanation of data:
we argue it is simpler and more intuitive to describe the accuracy
for the second target as .8125 (with one exception), instead of saying
it is .75, and then describing the deviation for each individual foil.

Overall, the model falls into a family described by Eq. (1):

ln
pi;j

1−pi;j

 !
∝ μ þ λi þ γi−γj þ δi;j ð1Þ

To apply the model to both experiments, we extend Eq. (1) as fol-
lows:

ln
p x½ �
i;j

1−p x½ �
i;j

0
@

1
A ∝ μ þ λ x½ �

i þ γ x½ �
i −γ x½ �

j þ δi;j þ δ x½ �
i;j þ δ 2−1½ �

i;j ð2Þ

where the δi, j parameter allows an overall pairwise similarity
estimate to be made, and the λi

[x], γj
[x], and δi, j[x] parameters allow an

experiment-specific value to be estimated. The parameter δi, j[2−1] is
used to indicate a contrast coding between experiments, enabling a
differential similarity parameter to be estimated. When present, the
value is added to the relevant pairs in Experiment 1 and subtracted
from the same pairs in Experiment 2.

Model parameters were estimated by fitting a linear regression to ac-
count for log-odds accuracy with the appropriate combination of inter-
cept, perceivability, bias, and dissimilarity parameters, as specified in
Eq. (2). To identify a minimal set of parameters that reliably accounted
for the data, we used a stepwise regression procedure available in the
stepAIC function of the MASS package (Venables & Ripley, 2002) of the
R statistical computing environment (R Development Core Team,
2008), using the Bayesian Information Criterion (BIC; Schwarz, 1978) to
determine which parameters should be included in the model. Bayesian
model selection schemes have been increasingly used to select between
models in psychology, and especially between models of perception
such as choice theory (cf. Myung, 2000; Myung & Pitt, 1997; Pitt et al.,
2002, 2003). The BIC statistic combines maximum likelihood goodness
of fit with a penalty factor formodel complexity (k log 2(N) for k param-
eters and N data points), so that a parameter is only retained in the
model if its goodness of fit improves more than the complexity pen-
alty term. In general, Bayesian model selection methods attempt to
counteract the tendency to create over-parameterized models that fit
the data but are unable to generalize. In our case, it also helps us to se-
lect a parsimoniousmodel fromamong a family of inconsistent possibil-
ities, to allow the most appropriate model for the data to be selected.

This approach begins with an appropriate minimal model (e.g., the
intercept only model), and then fits all models with one additional
parameter that are subsets of the complete model, on each step
choosing the model that has the smallest BIC score. This procedure
continues, on each following iteration fitting all models that differ
from the current model by one parameter (either by including a
new parameter or excluding parameter that had previously been
used). This stepwise procedure is generally more robust than pure
parameter-adding or parameter-trimming selection methods that
only search in one direction, at the cost of slower search.

We also fit a number of benchmark and sub-models to serve as
comparisons. The outcomes of several of the most interesting models
are shown in Table 4. Two models form the extremes of the model se-
lection search: at one end, the fully-specified Model 1 incorporating
similarity, bias, and perceivability parameters for both experiments
(with proper constraints); and at the other end, the intercept-only
Model 8.



Table 3
Accuracy and response time matrix for Experiment 2.

Target
Letter

Foil Letter

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A .810 .845 .724 .741 .759 .707 .724 .879 .845 .707 .828 .759 .810 .793 .828 .914 .741 .793 .862 .862 .707 .707 .810 .741 .810
B .724 .776 .638 .724 .724 .672 .690 .862 .776 .828 .828 .793 .776 .672 .672 .672 .724 .879 .793 .759 .741 .862 .690 .810 .759
C .845 .845 .759 .845 .862 .672 .845 .828 .793 .845 .776 .862 .879 .741 .828 .759 .862 .845 .845 .724 .862 .862 .897 .759 .862
D .862 .862 .862 .810 .776 .845 .828 .828 .914 .897 .897 .828 .862 .828 .810 .793 .879 .828 .828 .759 .810 .845 .793 .879 .897
E .810 .638 .776 .707 .603 .759 .638 .862 .759 .690 .621 .724 .690 .759 .603 .810 .655 .638 .810 .741 .810 .741 .741 .810 .707
F .707 .759 .793 .759 .603 .741 .776 .776 .810 .793 .862 .741 .879 .724 .724 .776 .707 .793 .621 .759 .724 .741 .741 .776 .655
G .793 .724 .603 .759 .793 .828 .845 .845 .828 .707 .810 .810 .828 .776 .776 .690 .741 .879 .845 .793 .828 .776 .897 .776 .845
H .552 .724 .707 .621 .638 .569 .741 .655 .603 .655 .724 .586 .586 .690 .517 .741 .534 .776 .690 .638 .655 .603 .655 .603 .569
I .517 .431 .448 .586 .448 .414 .655 .569 .448 .431 .414 .466 .552 .638 .500 .586 .466 .466 .534 .638 .379 .466 .466 .466 .414
J .741 .569 .690 .638 .776 .672 .690 .759 .879 .759 .724 .638 .724 .672 .690 .586 .724 .707 .759 .672 .690 .638 .707 .707 .707
K .655 .759 .810 .793 .672 .776 .741 .741 .810 .828 .793 .690 .759 .810 .776 .776 .621 .776 .724 .828 .759 .621 .707 .828 .707
L .707 .655 .638 .724 .672 .603 .810 .655 .741 .655 .655 .552 .707 .655 .707 .793 .603 .690 .621 .603 .586 .621 .586 .655 .707
M .776 .724 .793 .845 .828 .741 .793 .707 .897 .862 .707 .828 .724 .862 .810 .741 .707 .828 .931 .845 .759 .621 .741 .845 .690
N .793 .724 .862 .690 .690 .759 .845 .707 .776 .810 .759 .690 .672 .741 .810 .759 .707 .759 .810 .776 .655 .741 .690 .724 .776
O .776 .879 .845 .810 .879 .828 .897 .776 .914 .828 .810 .879 .948 .862 .793 .741 .793 .931 .897 .862 .897 .810 .828 .810 .845
P .793 .672 .793 .672 .810 .793 .845 .672 .759 .690 .759 .862 .793 .776 .862 .776 .793 .828 .828 .741 .776 .672 .707 .828 .793
Q .828 .707 .724 .621 .828 .759 .810 .828 .776 .793 .793 .862 .879 .793 .483 .828 .776 .741 .810 .690 .845 .845 .724 .828 .793
R .810 .793 .724 .759 .776 .879 .759 .810 .828 .793 .793 .828 .724 .793 .810 .793 .879 .724 .828 .810 .741 .793 .759 .776 .810
S .793 .638 .724 .707 .741 .690 .724 .810 .759 .741 .879 .759 .793 .776 .776 .724 .741 .672 .759 .793 .741 .845 .845 .793 .828
T .638 .638 .741 .638 .672 .483 .690 .621 .741 .638 .552 .741 .638 .638 .638 .655 .672 .621 .672 .621 .707 .707 .552 .707 .638
U .828 .776 .793 .707 .741 .828 .707 .776 .810 .828 .759 .759 .793 .741 .672 .776 .672 .776 .828 .862 .793 .759 .828 .810 .828
V .586 .845 .810 .724 .845 .776 .828 .845 .828 .793 .776 .810 .759 .741 .759 .724 .690 .810 .793 .810 .828 .741 .776 .828 .845
W .759 .828 .724 .690 .586 .690 .655 .603 .776 .810 .759 .741 .638 .707 .845 .776 .828 .690 .810 .793 .655 .741 .724 .690 .690
X .638 .603 .655 .655 .586 .569 .741 .621 .707 .655 .466 .690 .603 .621 .724 .621 .655 .707 .707 .655 .776 .621 .621 .552 .690
Y .672 .552 .638 .776 .690 .655 .672 .638 .776 .810 .586 .569 .603 .741 .707 .672 .672 .621 .707 .741 .655 .586 .603 .655 .655
Z .672 .741 .793 .810 .759 .759 .810 .793 .776 .690 .690 .845 .845 .845 .810 .793 .810 .793 .655 .776 .724 .655 .707 .586 .897
A 509 570 644 510 581 550 590 558 528 572 582 528 522 511 474 594 594 571 508 531 573 547 561 524 533
B 597 547 594 607 553 638 582 559 586 623 569 526 562 578 569 618 597 551 536 633 519 614 584 591 585
C 508 539 521 521 560 646 518 521 487 490 493 528 509 587 557 590 469 527 505 579 524 529 538 566 568
D 524 553 540 532 521 556 474 499 555 499 499 535 524 589 520 597 505 517 550 564 560 492 495 504 545
E 610 617 613 557 590 617 580 618 555 552 594 596 525 606 575 560 631 632 631 645 506 595 604 567 716
F 596 584 541 565 634 527 585 613 665 632 564 585 598 532 602 522 585 588 577 542 604 625 608 584 590
G 544 581 755 583 555 570 546 541 517 534 509 517 521 576 551 693 534 539 567 589 604 518 584 541 562
H 655 651 694 692 707 714 623 584 602 685 644 726 711 638 653 647 710 610 673 679 638 658 715 593 619
I 664 621 571 624 730 721 678 690 625 589 711 724 633 626 629 630 698 660 630 672 647 660 721 647 688
J 586 586 534 666 601 578 623 668 560 638 565 617 561 529 598 626 662 581 620 576 594 637 604 607 582
K 628 531 516 604 672 587 557 615 572 584 599 537 608 523 555 607 572 564 593 649 637 674 634 593 630
L 573 576 516 589 589 582 626 519 622 615 570 552 542 592 545 533 563 571 581 531 553 558 657 609 608
M 635 601 571 627 645 585 582 729 586 527 568 567 611 552 589 560 627 541 577 567 596 778 621 614 617
N 594 557 542 561 611 644 546 669 540 571 610 536 713 632 615 563 593 611 622 549 660 680 663 589 599
O 457 506 547 477 479 466 483 447 464 476 488 511 506 506 504 605 492 495 449 505 472 479 497 554 534
P 536 596 619 487 571 543 551 548 484 532 592 503 564 564 508 525 605 577 499 537 474 480 555 484 501
Q 558 576 612 688 567 569 682 556 587 504 552 545 510 562 654 599 577 559 616 601 558 616 598 604 620
R 571 547 515 533 596 509 540 547 523 624 551 528 551 548 512 581 583 572 506 515 573 561 501 536 545
S 598 612 579 546 535 540 570 544 559 640 559 571 564 559 523 608 642 631 619 571 550 584 637 567 615
T 607 609 557 621 617 603 573 656 650 612 680 642 626 600 606 650 581 596 635 633 655 634 646 671 578
U 619 572 552 583 537 587 623 540 606 573 508 570 523 581 611 541 627 615 629 543 552 560 570 548 560
V 595 540 525 569 544 551 548 553 595 617 587 546 574 596 601 510 575 576 547 591 614 603 591 614 573
W 593 674 582 618 554 606 538 675 627 611 717 614 688 620 589 601 589 595 591 688 617 723 629 662 617
X 616 709 649 628 667 655 630 647 644 774 670 634 725 728 575 692 633 611 660 671 573 672 623 749 691
Y 639 621 615 624 687 613 592 727 661 698 607 736 670 599 576 598 577 573 588 641 637 671 651 662 718
Z 582 510 563 552 582 575 526 548 474 560 557 549 558 522 570 565 565 595 524 587 581 620 538 601 594

Note. Values in top half of table indicates the proportion of participants (out of 96) who responded correctly for each target-foil combination. Values in the bottom half indicate the
mean response times for correct and incorrect responses.
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The variable selection method serves to search through sub-models
of this baseline Model 1, including only parameters that increase the
predictability considerably. The only parameter required in all models
was the intercept parameter, and we used a single common intercept
across experiments, which produced reasonable model fits. Because ac-
curacy was around 75%, which corresponds to an odds ratio of 3:1, we
expect the fitted μ parameters to have a value around ln(3/1)=1.1
(the actual fitted value of or final Model 3 was 1.3).

In all of the models, we allowed each experiment to have individual
perceivability and bias parameters, because other versions which con-
strained perceivability and bias parameters to be identical across ex-
periments produced unsatisfactory model fits. We next fit a Model 2,
in which we used a single set of similarity values across both
experiments. This model performed relatively well, with a relatively
low BIC statistic. We compared this to Model 3, in which we selected
from the full set of similarity parameters in Eq. (2). In this model, for
any letter pair, four different candidate similarity parameters were
available: one for each experiment, one for both experiments, and
one for the difference between Experiment 1 and Experiment 2.
These parameters are redundant and so only two of the four could
ever be selected for a given letter pair. The resulting Model 3 provided
the best overall BIC score, and we will examine the obtained parameter
values in greater detail below.

The fitted parameter values for Model 3 are found in Table 4. Only
parameters that were reliably different from 0 were chosen, so blank
entries can be interpreted as having a default value of 0. The right



29S.T. Mueller, C.T. Weidemann / Acta Psychologica 139 (2012) 19–37
columns of the table show similarity effects: either global parameters
that applied to both experiments, experiment-specific parameters
that indicate how the mask impacts dissimilarity, and “differential
dissimilarity”: situations where in one experiment the pair was less
similar than the default, and in the other experiment the pair was
more similar than default.

After selecting parameters using the BIC criterion, 20/52perceivability
parameters and 16/52 bias parameters remained. Experiment 2 re-
quired more of both bias and perceivability parameters. The sign of
the perceivability parameters seems somewhat related to the shape of
the mask: In Experiment 1, negative parameters were estimated for A,
C, J, and X, and for Experiment 2, for F, H, I, J, L, T, W, X, and Y. There
was essentially no relationship between these two sets of parameters,
indicating that themask has idiosyncratic impacts on the perceivability
of individual letters. In general, negative parameters were found for let-
ters with global shape similarity to the mask, and positive parameters
tended to have global shape dissimilarity. However, it is not true that
letterswith strong similarity to themask had universally poor perceiva-
bility. For example, most of the round letters in Experiment 1 did not
have a low perceivability value (D, G, O, Q, U)—their poor performance
can mostly be attributed to confusions amongst them, rather than an
overall decrease in perceivability.

A few additional models were fit for comparison, which help illus-
trate the relative contributions of the different parameters. Model 4
represents the biased choice model, allowing only bias and similarity
parameters. Its BIC score is much higher, but it is somewhat unfair to
compare that model to our preferredModel 3, in which full parameter
selection techniques were allowed. Consequently, we fit Model 5,
which was a biased choice model that used parameter selection in
an identical way to Model 3 (selecting among four similarity
parameters per letter pair, and selecting only the bias parameters
that were deemed reliable). This model produce BIC scores that
were much worse, and used slightly more bias parameters (24 versus
16) and substantial more similarity parameters (115 versus 78) in
comparison to Model 3. These additional similarity parameters in-
cluded large sets that seem to account for similarity between a single
letter and many other letters. For example, consider “H” and “I”,
whose accuracies were overall fairly low in Experiment 2. Model 5 es-
timated negative bias for these letters, but nine similarity parameters
for H and 13 parameters for I. So, to account for the lower accuracy, the
biased choice model must assume that H and I becomemore similar to
nearly half the letters of the alphabet. In contrast, by using two percei-
vability parameters related to H and I, Model 3 reduces the similarity
parameters to just four: one differential similarity value involving I,
and one similarity value for H specific to Experiment 2. In other
words, although the overall decrease in accuracy for H and I in Experi-
ment 2 could logically be attributed to a change in the similarity
space, a simpler account is that their perceivability was reduced: an ac-
count much more in line with the hypothesized impact of the visually-
similar # mask. This illustrates how perceivability parameters are im-
portant for accounting for the data, and thus should be taken seriously
as a theoretical construct.

Finally, Models 6 and 7 couple perceivability with either bias or
similarity (but not both). Model 6 used the stepwise BIC procedure to
select bias and perceivability parameters. This model is substantially
worse than those that also incorporated similarity parameters (e.g.,
Models 2 and 3), while selecting roughly the same number of bias
and perceivability parameters (16 and 24, respectively) as Model 3
(which selected 16 bias and 20 perceivability parameters). This indi-
cates that the remaining similarity parameters are critical for account-
ing for the data. Interestingly, Model 6 performs better than the bias
+similarity models (Models 4 and 5), even though it could not use
any of the 325 similarity parameters, showing the power of perceiva-
bility parameters. In contrast, Model 7 uses the stepwise BIC-selected
parameters to select perceivability and similarity parameters (with
no bias). Here, we used one set of similarity parameter per
experiment(rather than the full complement of four), but the results
are similar. The model selected 23 perceivability parameters (com-
pared to 20 in Model 3), and 25 similarity parameters (compared to
17 global similarity parameters+26 experiment-specific values in
Model 3). The model is slightly better than the biased choice model,
but still much worse than Model 3. Together, these models illustrate
the incremental validity of each factor, and demonstrate how together,
they provide the most parsimonious account of the data.

The fitted parameters in Table 5 can be used to compute predicted
accuracies for any condition in the experiments. For example, to de-
termine the predicted accuracy for “A”with the “B” foil in Experiment
1, one adds together the intercept (1.306), the perceivability for “A”
(−0.57), the bias for “A” (0.0), the dissimilarity between “A” and
“B” (0), and subtracts the bias for “B” (.227). This estimates the log-
odds accuracy for that condition to be 1.306−.57−.227=0.509,
which corresponds to a probability of .624 (the actual accuracy for
this condition was .636). Fig. 4 shows the predicted accuracies for
Experiments 1 and 2, based on the parameters in Table 5. It should
be evident that the parameter selection techniques tend to place
most points at the intercept, because there is little evidence to sug-
gest they differ from the default accuracy. Variability in the mean ac-
curacy across targets (columns) stems from differences in the
perceivability parameters; variability within a column tends to stem
from bias parameters (when a foil is high or low relative to most tar-
gets), or from individual pairwise similarity values.

4.2. Detailed examination of Model 3 parameters

Our comparison of models shows clear support for a similarity-free
notion of perceivability, which also appears related to the similarity be-
tween the mask and the target character. Notably, perceivability for J
and X were negative for both experiments: this suggests that these
characters are overall difficult to identify when masked by either @
or #. The A and C were the only other characters with negative percei-
vability in Experiment 1, but the F, H, I, L, T, W, and Y in Experiment 2
were also reliably negative. Several characters had reliably high perceiva-
bility: M, S, V, and Y in Exp. 1, and C, D, and O in Experiment 2. Curiously,
the round@mask seemed to have little negative perceivability impact on
round characters (aside from the C), whose mean recognition accuracy
tended to be lower than average, but largely because of specific similarity
effects between target-foil pairs.

Similarly, bias impacted performance on trials for particular tar-
gets and foils. For example, both I and L had negative bias across
both experiments, coupled with negative perceivability in only Ex-
periment 2. The overall negative bias indicated that participants
were unwilling to give the letter as a response. This may stem from
a miscalibrated understanding of what the perceptual evidence for
these letters should have been.

Finally, the parameter search method allows variability to be
explained either by experiment-specific or general target-foil simi-
larity. Interestingly, although a large core of similar letters were
identified across experiments, there were idiosyncratic similarity ef-
fects (both positive and negative) for each mask. Round characters
were generally found to be similar across experiments, but the @
mask in Experiment 1 appeared to increase the similarity between
D and other round letters (C, G, O, Q, U), as well as the similarity be-
tween G and Q, D, and U. Perhaps the # mask left D and G particular-
ly easy to identify, whereas they were obscured with the @ mask. In
Experiment 2, the # mask appeared to increase the similarity of A
and V, F and T, H and W, and E and K. Again, the mask may have ob-
scured or interrupted feature binding that helps discriminate be-
tween these letter pairs.

Several individual characters and character combinations stand
out in this study. These include the “A” and “I” in Experiment 1, and
the “X”, “H”, and “I” in Experiment 2. By examining the model param-
eters, we can identify psychological explanations for why these
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Fig. 3. Accuracy for letter combinations in Experiment 2. Top panel shows accuracy for
letter pairs sorted by target (top panel) or by foil (bottom panel). The gray boxes in
each column depicts the 96% confidence range for each target-foil combination, using
a bootstrapping process to incorporate between-participant variability in mean accura-
cy. Observations well outside these bounds correspond to conditions where (top) bias
and similarity are strong, or (bottom) perceivability and similarity are strong. Exact
values are listed in Table 3.

30 S.T. Mueller, C.T. Weidemann / Acta Psychologica 139 (2012) 19–37
letters were identified poorly. For example, the “I” has universally
negative bias across both experiments, but only has a negative percei-
vability in Experiment 2, where it was highly similar to features in the
mask character. In other words, the # made the “I” difficult to see, but
people were generally reluctant to respond with an “I”, possibly be-
cause they were miscalibrated in how difficult it actually was. While
it is not surprising that the perceivabilities of the “I”, “X”, and “H”
were impacted by the “#” mask, it is perhaps surprising how poor
performance actually became.
The results for “A” in Experiment 1 show a similar pattern. How-
ever, this result is quite unexpected, because “A” does not seem to
share low-level perceptual features with the “@”-mask. Yet the “A”
still does have a strong similarity to the mask, in that the “@” mask
embeds a lowercase “a” within it. This suggests that just as physical
similarity between the mask and stimulus can reduce perceivability,
so can more abstract similarity. This result is reminiscent to the ro-
bust finding of evidence discounting in short term priming tasks
which seem to not be affected by changes in low-level visual features
as longas letter identity is kept constant (Huber et al., 2001;Weidemann
et al., 2005, 2008). The ubiquitous presence of the “A” letter code in the
mask may have reduced the diagnosticity of evidence favoring the
presence of an “A” target. This leads to a interesting question: Did
the negative perceivability of “C” in Experiment 1 stem from physical
interruption of features, or because of abstract letter identities? Our
experiment cannot distinguish these two accounts.

The model finds that some aspects of similarity are robust for dif-
ferent masks, but in contrast, bias and perceivability are highly
dependent on the mask. Furthermore, a number of similarity effects
are sensitive to the mask as well. This suggests that the perceivability
of a letter can be systematically altered via masking, but also that
response biases can as well, as can the similarity of a pair of letters.
We interpret these results as showing (1) the mask interferes system-
atically with the stimulus information, possibly both creating a partial
percept and introducing additional features into the percept that
must be discounted; (2) that this percept will change in similarity
to both the target and the foil, producing corresponding changes in
perceivability and similarity; and (3) the participant (or at least
their perceptual decision system) is sensitive to these changes, and
can adjust response biases in light of these perceptual changes.
4.3. Relation of our results to previous studies

It is also important to establish whether our results are broadly
compatible with the numerous previous studies we identified. To
make this comparison, we created a composite similarity score across
eleven of the studies reported in Table 1. These included studies with
uppercase letters using a variety of methods to assess confusability or
similarity, including matrices reported by Banister (1927), Hodge
(1962), Gibson et al. (1963), Fisher et al. (1969), Gilmore et al.
(1979), Podgorny and Garner (1979; both ratings and response time
data), Boles and Clifford (1989) and Gupta et al. (1983).

For each study, a composite similarity matrix was formed across the
different conditions reported, so that two matrices from Townsend
(1971a) were combined, two from Fisher et al. (1969) were combined,
and three from Banister (1927) were combined. The exception to this
practice was the rating and response time procedures of Podgorny
and Garner (1979), whichwe dealt with separately. This formed eleven
composite similarity matrices, which we then transformed into sym-
metric matrices by averaging each matrix with its transpose. Finally,
we rank-ordered the upper-diagonal elements, with 1 indicating the
most similar and 325 indicating the least similar pair, regardless of
the specific measure of similarity. Bias and perceivability were not
explicitly factored out using this procedure.

The eleven studies were moderately similar: inter-correlations of
the cell ranks ranged between .26 and .81, with an average of .42.
We then created an average matrix, which found the mean of the
ranks across the eleven studies. Correlations of each individual
study to the average ranged from .58 to .86, with a mean correlation
of .68. The distribution of these mean ranks is plotted in Fig. 5, in
order from most similar to least similar. Note that for roughly the
first 100 targets, the slope is greater than 1, so that the mean rank
similarity of the 100th most similar target was around 140. This is
simply regression to themean, but the fact that themean rank similarity
of the most similar pairs is fairly close their actual rank similarity



Table 4
Summary of models predicting log-odds accuracy based on various predictor sets.

Model name BIC R2 Adjusted R2 RSE F Statistic

1. Full model 4162 .9823 .9616 .253 F(699,600)=47.5
2. Intercept+BIC-selected bias, similarity, and general perceivability 592 .666 .648 .259 F(66,1234)=37.8
3.* Intercept+BIC-selected bias, similarity, general & specific perceivability 572 .692 .672 .2498 F(77,1222)=35.7
4. Full bias+similarity (Biased choice rule) 4162 .845 .665 .253 F(699,600)=4.68
5. Bias+Similarity (BIC-Selected) 1000 .65 .617 .269 F(114,1185)=19.43
6. Bias+Perceivability (BIC-selected) 734 .577 .562 .289 F(42,1257)=40.8
7. Similarity+Perceivability (BIC-selected) 715 .597 .581 .283 F(48,1251)=40.8
8. Intercept-only model 1549 n/a n/a .4367 t(1299)=100

Note: RSE = residual standard error (error sum of squares divided by the residual degrees of freedom). General similarity refers to a single set of similarity parameters fit across
experiments. Specific similarity refers to using similarity parameters that can account for each experiment individually. Model 3, indicated with a *, indicates our preferred best model.
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(especially in contrast to the least similar pairs) indicates substantial
agreement among the constituent data sets.

Fig. 5 also shows how the reliable parameters identified by our
model compare to these past studies. All but two (A–V and R–Y) of
the 29 reliable similarity parameters were within the top 100 letter
pairs. In addition, the figure identifies the ten most highly similar
pairs (according to previous studies) that our study did not identify.
These differences appear not to represent a lack of sensitivity of the
model; rather, they appear to be pairs that simply were not confused
disproportionately in our experiments. These differences from the
past studies are most likely a consequence of the font faces and
methods used to assess similarity, and possibly contamination by per-
ceivability and bias, which were not factored out.

Our assessed similarity values (treating non-reliable values as 0)
were related to the mean rank similarity values with a Pearson's ρ
of .42 (t(323)=7.95; pb.001), and when adjusted so that reliable pa-
rameters tied to only one of our experiments were divided in half, the
correlation rose to .46. These correlations are in the same range as the
intercorrelations of the component studies that actually made up the
Table 5
Reliable parameters from Model 3 using the BIC model selection technique. Smaller and m
letter combination was discriminated less well than was expected by the perceivability and
curacy of 78.7, which was restricted to be the same across both experiments.

Letter Experiment 1 (“@”) Experiment 2 (“#”)

Perceivability (λ) Bias (γ) Perceivability (λ) B

Intercept 1.306 1.306
A −0.571
B 0.227
C −0.174 0.602 −
D 0.208
E
F −0.153
G −
H −0.612
I −0.273 −0.948 −
J −0.338 −0.242 −
K
L −0.164 −0.573 −
M 0.246
N −
O 0.672 −
P
Q
R 0.171
S 0.258 −
T −0.382 −
U
V 0.422
W −0.251
X −0.25 −0.851
Y 0.204 −0.626
Z

composite score. Its lower than average correlation to the composite
score stems from the fact that the other studies partly composed
the composite, because bias and perceivability were not factored
out of the composite scores, and because of the variety of methods
and font faces were used to compute the scores. Nevertheless, this
analysis shows that the parameter selection method we used was
able to identify similarity parameters that are broadly in line with
the similarity values identified across past studies.

4.4. Relation of our model to previous models

Our model explicitly estimates parameters associated with percei-
vability, bias, and similarity. Past models have typically avoided esti-
mating all three simultaneously, but the concept does have precedent
in a number of previous approaches. For example, Shepard (1957) de-
scribed a model akin to choice theory that essentially went through
a biased decision process twice: once for perception, and once for re-
sponse. The stimulus-related weights in this model are proportional to
the probability that a stimulus S is perceived if stimulus Swas presented,
ore negative values indicate that a letter was less perceivable, biased against, or that a
bias alone. Baseline log-odds accuracy was 1.306 which is equivalent to a percent ac-

Global Dissimilarity (δ) Experiment-specific
Dissimilarity (δ)

ias (γ)

B G −0.388 Experiment 1
C G −0.737 B Z 0.621

0.206 C O −0.686 C D −0.638
0.155 C Q −0.540 D G −0.927

C U −0.364 D O −0.597
D Z 0.349 D Q −0.849

0.230 E F −0.648 D U −0.618
H N −0.457 E I 0.475

0.346 I L −0.335 G Q −0.560
0.146 K M −0.345 G U −0.599

K X −0.355 O U −0.522
0.191 M N −0.424 R Y −0.600

M W −0.468
0.118 N W −0.408 Experiment 2
0.161 O Q −1.152 A V −0.551

Q U −0.646 D L 0.653
X Y −0.342 E K −0.635

0.148 F T −0.497
0.126 G L 0.482
0.199 G X 0.473

Differential Dissimilarity H W −0.494
A Q −0.472 L P 0.663
E N 0.360 L Q 0.621

0.161 G P −0.413 Q R 0.470
I Z 0.379
U X −0.415
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Fig. 4. Predicted accuracy values for Experiment 1 (top panel) and Experiment 2 (bot-
tom panel) based on the parameters of Model 3, found in Table 5.
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whichmight be interpreted as perceivability. Interestingly, his approach
was also similar to our own in that he assumed that the similarity space
should be represented by a small number of parameters (identified via
factor analysis instead of variable selection) which captured the major
aspects of similarity.

Other subsequent research has also incorporated methods to esti-
mate perceivability. Townsend and Landon (1983) reviewed a wide
variety of models that have been used to account for confusion matrix
data, and a number of those models incorporated factors that could be
interpreted in terms of perceivability (especially generalized guessing
models). For example, Lappin (1978) described parameters associated
with both the stimulus and response space, which correspond roughly
to perceivability and bias. Later, (closely following Shepard's approach)
Nosofsky (1991) proposed stimulus and response biases, aswell as both
stimulus and response similarities, to explain confusion data. More re-
cently, Rouder (2004) framed the variable similarity choice model
(vSCM), which accounts for variability in the strength of perceivability
across experimental manipulations by modulating a letter pair's simi-
larity. Also, Massaro's 1998 Fuzzy Logical Model of Perception (FLMP)
allows information from multiple distinct information channels to be
combined, and if one considers similarity and perceivability as two dis-
tinct channels,2 the FLMP could be viewed as enabling both similarity
and perceivability to be incorporated.

Despite the numerous models that allow for concepts of perceiva-
bility, the analyses of the confusion matrices we reviewed in Table 1
frequently decomposed accuracy into just similarity and response
bias, typically using the biased choice model. This approach has be-
come popular for a number of reasons. One primary reason is because
the simultaneous impact of similarity, perceivability, and bias cannot
be estimated with typically approaches, and so constraints are made
such that perceivability is simply equated with mean similarity. This
has a primarily practical motivation, but there is theoretical sense in
which this approach can be thought of as more parsimonious, be-
cause it does not require an additional theoretical concept of
perceivability.

According to typical applications of the choice model to naming
data (in which every letter is a potential choice alternative), the proba-
bility of making response j for a given stimulus i is:

p jð jiÞ ¼ βjηi;j

∑kβkηi;k
; ð3Þ

whereβ is bias and η is similarity. Theprobability of correctly identifying
target i with alternative j in a two-alternative forced-choice task is:

pi;j ¼
βiηi;i

βiηi;i þ βjηi;j
; ð4Þ

In the Appendix, we show that the parameters estimated with our
statistical model (λ, δ, and γ) are equivalent with transformation to
corresponding parameters in choice theory. Yet in contrast to our sta-
tistical model, the choice model makes several theoretical assump-
tions about the nature of these factors outside our model. For
example, according to choice theory, accuracy depends on the number
of options being considered, and although it assumes that the relative
proportion of any two responses is unaffected by the introduction of ad-
ditional alternatives, the probability of making any particular response
will usually be reduced by adding alternatives. Despite the fact that
the choice model performs surprisingly well (Nosofsky, 1991; Smith,
1992), these assumptions have also sometimes failed to be supported
by appropriate empirical tests (e.g., Ashby & Perrin, 1988; Rouder,
2001, 2004). Even though our parameter estimates can be interpreted
in terms of choice theory, they do not rely on the samepsychological as-
sumptions embodied by choice theory.

Rouder's (2004) vSCM augmented choice theory by assuming the
existence of an additional parameter that can be interpreted in terms
of our definition of perceivability, although Rouder (2004) likely
intended it as a parameter that would be applied to secondary experi-
mental manipulations such as presentation time, and not estimated
for each target stimulus. The similarities and differences between our
model and the vSCM can be seen by examining a generalized version
of choice theory that incorporates both ourmodel and the vSCM(ignoring
response bias for themoment),withν corresponding to ournotionof per-
ceivability (ηi, i), s corresponding to target-foil similarity, and α corre-
sponding to the vSCMmodel's notion of perceivability:

P ν; s;αð Þ ¼ ν
νþ sα

ð5Þ
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In the vSCM, ν=1, whereas in our model, α=1. The difference
between the two models is that we assume perceivability impacts ν,
whereas the vSCM assumes it impacts α. Because α serves to modu-
late s (if s is 0, α has no impact), it really serves as a modulator of
similarity.

How do these assumptions fundamentally differ? Both assume
that an additional parameter controls the overall chance of a stimulus
being identified. In terms of our experiment (and likely most experi-
ments we reviewed), there would probably be little difference in the
resultant goodness of fit, because s would simply trade off for ν or α.
However, the models do make differing predictions that may be test-
able. We can examine the differences by plotting how a constant
change in perceivability will impact accuracy across different levels
of similarity. This is illustrated in Fig. 6.

In Fig. 6, we began by computing a ‘baseline’ model: the range of
probabilities that would be expected when both perceivability param-
eter was set to their default values of 1.0, and similarity was varied to
produce a range of accuracies between .5 and 1.0. Then, each line repre-
sents the impact on accuracy of adjusting the perceivability parameter
(α or ν) up or down from 1.0, to levels that range between 1/4 and 4.
(Although equivalent values of α and ν produce value contours in
similar ranges, the two parameters are not identical indices of per-
ceivability). The models differ in several ways. First, the contours in
Fig. 6 show how parametrically varying similarity should impact
constant values of perceivability, and vice versa. In our model, high-
ly-similar letters have the most to gain by increasing perceivability;
in the vSCM, highly-similar letters will gain less than moderately-
similar letters. Experiments testing this prediction may be possible
to execute, perhaps by manipulating the choice set (and thus simi-
larity) for a small set of characters that presumably have a constant
level of perceivability across conditions. We know of no experiments
that have done this, but such an experiment could provide a critical
test of two distinct formalizations of perceivability in choice theory.
2 We propose that similarity could be viewed as an information channel because it
enables exploring the FLMP as a means for combining similarity and perceivability. It
is unclear to what extent viewing similarity (or its inverse, distinctiveness) as a source
of information is psychologically meaningful.
Another useful comparison to consider is Massaro's 1998 Fuzzy
Logical Model of Perception (FLMP). Although the FLMP is designed
to combine information from two distinct sources or channels (e.g.,
audio and visual), one might consider dissimilarity and perceivability
as two distinct channels, and ask how they would interact according
to the FLMP. Eq. (6) shows the basic formulation of FLMP, where a
and b are probabilistic values indicating evidence from each of the
two channels.

PFLMP a; bð Þ ¼ a⁎b
a⁎bþ 1−að Þ⁎ 1−bð Þ ð6Þ

The rightmost panel of Fig. 6 shows the equivalent predictions of
the FLMP. Although the input parameters are on different scales, the
isosensitivity curves have a form that is quite similar to the model
we propose. It could be challenging to identify an empirical test be-
tween how our model incorporates perceivability, and how the
FLMP might, but both of these differ from the vSCM account.

These issues hint at some unresolved questions in the study of
perception and choice. Our notion of perceivability is really quite
primitive; in reality, there may be a number of factors associated
with perceivability that operate differently. For example, extrinsic ex-
perimental manipulations that impact perceivability (noise, contrast,
angular eccentricity, size, stimulus duration, etc.) may operate in fun-
damentally different ways from other more intrinsic factors that
might also impact perceivability (familiarity, letter identity, letter
form, font face, letter complexity, etc.). Perhaps different types of
models are needed to distinguish these types of perceivabilities,
such that one type of factor may map onto the vSCM approach,
while the type maps onto our approach. Testing between these par-
ticular models should be possible, even though such models have
been found to be very flexible and able mimic one another in many
situations (cf. Pitt et al., 2003).

4.5. Relation of our results to other factors

In the past, researchers have sometimes found secondary factors
that correlated with confusions or other aspects of similarity matri-
ces. For example, one might expect response biases to favor more
common letters (as would be optimal in naturalistic letter detection),
and researchers have suggested that perceivability may be influenced
by size or complexity of the stimuli (Attneave & Arnoult, 1956).

We examined some of these issues using the different parameters
from our model. For example, we compared our estimated perceiva-
bility and bias scores to mean letter frequency (as described by
Pratt, 1939). We found no reliable correlation. We also computed
perimetric letter complexity via the method described by Pelli et al.
(2006). This method computes a ratio between the squared perimeter
of a letter and the number of black pixels in the letter, and has been
shown to predict perceivability. We found no reliable correlation be-
tween these measures and our obtained perceivability scores either.
These results are not too surprising, given the low correlation of
these values across our two experiments—it would be difficult to be
highly correlated with both sets of perceivability parameters, when
they are not correlated with one another. Given that the mask has
such large impacts on perceivability, there may be ways to measure
complexity based on differences and similarities betweeen the mask
and target, which could provide new insight into masking.

This lack of correlation can also be accounted for by the fact that
Pelli et al. (2006) primarily demonstrated that mean perimetric com-
plexity of a fontface (across the alphabet) was correlated with re-
duced detection efficiency and accuracy; they did not report
whether differences in perimetric complexity within the characters
of a font were predictive of accuracy. Their results may simply show
that letters from ornate and complex font faces (which deviate from
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simple fonts likeHelvetica) are harder to discriminate fromone another
(i.e., they are more similar to one another), possibly because the orna-
ments and serifs are specifically designed to make letters more similar
to one another (see Hofstadter & McGraw, 1995).
5. Summary and conclusions

In this paper, we identified more than 70 previously published
studies of alphabetic letter similarity, dating back to research con-
ducted by Helmholtz's proteges in the 19th century. Many of these
studies were perceptual detection tasks, and across experiments
three primary factors have been used to account for performance:
perceivability, bias, and similarity. Yet recent approaches have rarely
considered all three concepts together. We conducted two experi-
ments and developed a model that enabled us to estimate these
three factors simultaneously. By doing so, we found that these three
factors appear to account fairly well for our data, and in fact do so bet-
ter than two-factor models incorporating only bias and similarity,
with an overall more parsimonious model.

Although some early formal models incorporated factors related
to perceivability, the modeling community quickly recognized the
sense in which perceivability and similarity were related and could
trade off, leading to the prominence of biased-choice models. One
reason for this is the implicit use of balanced factorial designs to esti-
mate parameters: there are not enough degrees of freedom to inde-
pendently estimate mean values (i.e., the perceivability and bias)
and the individual cells relative to that mean (i.e., the similarity ef-
fects). Thus, the notion of perceivability has essentially been aban-
doned in formal models of perceptual choice. This methodological
limitation became an assumption of convenience and has begun to
masquerade as an axiom of perception, rather than being viewed as
a theory that can be tested. One of the primary conclusions of our
work is that perceivability should be considered independent from
mean similarity, and models should attempt to explicitly evaluate
the contribution that perceivability can make.

Our model demonstrates the benefit of assuming distinct effects
on bias, perceivability, and similarity. Curiously, although this ap-
proach is somewhat at odds with biased-choice theory, is actually
quite consistent with the approach taken by many of the early studies
we reviewed in Table 1. Studies from the 19th and early 20th centu-
ries often focused on ranking letters with respect to “legibility”,
while calling out a small number of highly-confusable letter pairs.
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Fig. 6. Comparison between the assumptions of our model and those of Rouder's (2004)
obtained when perceivability is increased or decreased by a constant amount from 1.0, acr
Likewise many past studies obtained confusion matrices in which
most off-diagonal cells were empty or had just a few confusions,
whereas the observed confusions were concentrated in just a few
pairs. Just as in this earlier research, our models identify perceivability
(and bias) parameters, and a handful of similarity parameters that ac-
count for deviations from this model. Despite the current dominance
of similarity and bias, we therefore believe that the study of perceptual
identification in general, and that of alphabetic similarity and confusion
in particular, requires careful consideration of letter perceivability.
Appendix A. Correspondence of logistic model to Luce's (1963)
choice theory

For the correspondence between choice theory and our statistical
model to make sense, we must make several assumptions about the
meaning of different parameters which are often confounded in the
application of choice theory. First, we must distinguish between a
number of corresponding stimulus classes: the originally-presented
distal stimuli (si), the perceived target (si), long-term perceptual
memory for each letter ( ŝ i), and the perceived response alternative
with little noise and strong bottom-up support (s i). Although appli-
cations of choice theory have typically not distinguished between
these, they are all in principle distinct. Whereas one might interpret
the similarity parameter of choice theory as indexing a pure similarity
between two abstract characters, an experiment that produced the
data fromwhich these estimates are made may actually be measuring
the similarity between two different specific classes; for example, a
perceived target and a long-term memory representation of that
and other letters.

If λ estimates the similarity between the perceived stimulus and
the correct response option (si and s i), this corresponds (with appro-
priate transformation) to the usual interpretation of ηi, i, which is typi-
cally assumed to be 1.0. Note that this interpretation of our theory
places the role of perceivability at the comparison process between
the percept of the target and that of the response standard. Our bias pa-
rameters match fairly directly (with proper transformation) to their
corresponding notions in choice theory, and our dissimilarity parame-
ters are interpreted as the degree towhich the percept and the response
alternative match, and have a 1:1 correspondence (with transforma-
tion) to ηi, j.

As noted by others (e.g., Townsend & Landon, 1982), the more
general descriptions of choice theory (e.g., Luce, 1959) express the
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overall probability of selecting option i from a set A based on basic
logic of irrelevant alternatives: that the probability that i is chosen
from A is equal to the probability that the selection option is chosen
from a subset L times the probability that i would be chosen from L
alone:

P i;Að Þ ¼ P L;Að ÞP i;Lð Þ; ðA:1Þ

which can be expressed as:

P i;Að Þ ¼ V ið Þ
∑j∈A V jð Þ : ðA:2Þ

Where V is the value of alternative i. Luce (1963) proposed a var-
iation often referred to as the “biased choice model” that is suitable
for N-alternative confusion matrices:

pj j i ¼
βjηi; j

∑kβkηi;k
; ðA:3Þ

which can be further restricted to deal with just two-alternative
forced-choice accuracy:

pi;j ¼
βiηi;i

βiηi;i þ βjηi;j
ðA:4Þ

where η is a measure of similarity between two stimuli, and β as a re-
sponse bias.

The theory (cf. Luce, 1963) makes three primary assumptions:

• Assumption 1. For all i, j∈S, ηi, j=ηj, i.
• Assumption 2. For all i∈S, ηi, i=1.
• Assumption 3. For all i, j, and k∈S, ηi, k≥ηi, jηj, k.

For an indirect measurement procedure such as naming, one com-
pares the noisy percept to the perceptual memory for all letter
options, and so one technically estimates η

i′ ;̂j
, where i′ represents

the noisy percept, and ĵ represents the memory for a letter. Re-
searchers have often assumed that η

i0 ;̂i ¼ 1 (e.g., Townsend, 1971a,
b), which is not the same as Assumption 2 of choice theory, which as-
sumes that ηx, x=1 for whatever x represents. In other words, As-
sumption 2 states that the similarity between two identical things
should be 1.0, but if one is comparing a noisy memory of a letter to
a clear percept of the same letter, these are not guaranteed to be iden-
tical and so it the value may be less than 1.0. Setting η

i′ ;̂j
¼ 1:0 essen-

tially assumes the stimulus is perceived perfectly and remembered
equally well.

Our statistical model is applied to a 2-AFC task, where the noisy
percept (i′) is compared to two stimuli with strong perceptual sup-
port (ī and j ). We suppose that the log-odds of a correct response
pi, j is proportional to the influence of three factors:

log
pi;j

1−pi;j

 !
∝λi þ γi−γj þ δi;j; ðA:5Þ

where γ is an measure of bias, λ is a measure of perceivability, and δ is
a measure of dissimilarity.

By making the following substitutions into Eq. (A.5):

γi ¼ log βið Þ
λi ¼ log ηi0 ;

P
i

� �
δi;j ¼ − log ηi0 ;

P
j

� �
one obtains the equation

log
pi;j

1−pi;j

 !
¼ log ηi′ ;

P
i

� �
þ log βið Þ− log βj

� �
− log ηi′ ;

P
j

� �
: ðA:6Þ

Eq. (A.6) can be solved for pi, j with the following intermediate
steps:

pi;j
1−pi;j

¼ βiηi′ ;
P
i

βjηi′ ;
P
j
;

1−pi;j
pi;j

¼ βjηi′ ;
P
j

βiηi′ ;
P
i
;

1
pi;j

−1 ¼ βjηi′ ;
P
j

βiηi′ ;
P
i
;

1
pi;j

¼ 1þ βjηi′ ;
P
j

βiηi′;
P
i
;

1
pi;j

¼ βiηi′ ;i þ βjηi′ ;j

βiηi′ ;i
;

pi;j ¼
βiηi′ ;i

βiηi′ ;i þ βjηi′ ;j
; ðA:7Þ

After applying these algebraic steps, Eq. (A.7) is identical to
Eq. (A.4). Furthermore, the assumptions 1 through 3 also apply to
our model. For example, we assume that similarity is symmetric (As-
sumption 1) and that the triangle inequality holds (Assumption 3).
We also assume that the self-similarity Assumption 2 holds, but in
our model perceivability is equated with a related quantity: ηi′, ī,
which is not fixed to 1.0. This quantity represents the similarity be-
tween the percept of the (masked) target and that of the correct re-
sponse option. Typically, researchers have implicitly assumed that
η
i′ ;̂i

¼ 1, but this is only a technical assumption and not one based
on theoretical assumptions of choice theory per se. In our model,
one may still assume that ηi, i=1, and so it does not violate Assump-
tion 2 of choice theory.

Interpretation of our obtained parameters in terms of choice theory
is straight-forward, although there is one point of caution. The obtained
value δ corresponds roughly to traditional distance measures used in
choice theory (cf. Luce, 1963), but our obtained measures are mostly
negative, indicating high confusability. This corresponds to values of η
that are greater than 1.0, but η is often constrained to be between
0 and 1, with 1.0 corresponding to “identical”. This creates a problem
because if response biases are ignored, one could produce situations
where response tendencies still place accuracy below 0.5 for a forced-
choice task. To avoid this situation, ηi, j must be smaller than ηi, i for all
i and j, which corresponds to −δi, jbmin(λi,λj). Violations of this
would indicate that choice theory provides an inadequate account of
our data. This was never the case for the values of similarity and percei-
vability estimated in our experiments.
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